2,005 research outputs found

    On Equilibrium Dynamics of Spin-Glass Systems

    Full text link
    We present a critical analysis of the Sompolinsky theory of equilibrium dynamics. By using the spherical 2+p2+p spin glass model we test the asymptotic static limit of the Sompolinsky solution showing that it fails to yield a thermodynamically stable solution. We then present an alternative formulation, based on the Crisanti, H\"orner and Sommers [Z. f\"ur Physik {\bf 92}, 257 (1993)] dynamical solution of the spherical pp-spin spin glass model, reproducing a stable static limit that coincides, in the case of a one step Replica Symmetry Breaking Ansatz, with the solution at the dynamic free energy threshold at which the relaxing system gets stuck off-equilibrium. We formally extend our analysis to any number of Replica Symmetry Breakings RR. In the limit RR\to\infty both formulations lead to the Parisi anti-parabolic differential equation. This is the special case, though, where no dynamic blocking threshold occurs. The new formulation does not contain the additional order parameter Δ\Delta of the Sompolinsky theory.Comment: 24 pages, 6 figure

    On the comparison of volumes of quantum states

    Full text link
    This paper aims to study the \a-volume of \cK, an arbitrary subset of the set of N×NN\times N density matrices. The \a-volume is a generalization of the Hilbert-Schmidt volume and the volume induced by partial trace. We obtain two-side estimates for the \a-volume of \cK in terms of its Hilbert-Schmidt volume. The analogous estimates between the Bures volume and the \a-volume are also established. We employ our results to obtain bounds for the \a-volume of the sets of separable quantum states and of states with positive partial transpose (PPT). Hence, our asymptotic results provide answers for questions listed on page 9 in \cite{K. Zyczkowski1998} for large NN in the sense of \a-volume. \vskip 3mm PACS numbers: 02.40.Ft, 03.65.Db, 03.65.Ud, 03.67.M

    The spherical 2+p2+p spin glass model: an exactly solvable model for glass to spin-glass transition

    Full text link
    We present the full phase diagram of the spherical 2+p2+p spin glass model with p4p\geq 4. The main outcome is the presence of a new phase with both properties of Full Replica Symmetry Breaking (FRSB) phases of discrete models, e.g, the Sherrington-Kirkpatrick model, and those of One Replica Symmetry Breaking (1RSB). The phase, which separates a 1RSB phase from FRSB phase, is described by an order parameter function q(x)q(x) with a continuous part (FRSB) for x<mx<m and a discontinuous jump (1RSB) at x=mx=m. This phase has a finite complexity which leads to different dynamic and static properties.Comment: 5 pages, 2 figure

    Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices

    Full text link
    We consider the spectral form factor of random unitary matrices as well as of Floquet matrices of kicked tops. For a typical matrix the time dependence of the form factor looks erratic; only after a local time average over a suitably large time window does a systematic time dependence become manifest. For matrices drawn from the circular unitary ensemble we prove ergodicity: In the limits of large matrix dimension and large time window the local time average has vanishingly small ensemble fluctuations and may be identified with the ensemble average. By numerically diagonalizing Floquet matrices of kicked tops with a globally chaotic classical limit we find the same ergodicity. As a byproduct we find that the traces of random matrices from the circular ensembles behave very much like independent Gaussian random numbers. Again, Floquet matrices of chaotic tops share that universal behavior. It becomes clear that the form factor of chaotic dynamical systems can be fully faithful to random-matrix theory, not only in its locally time-averaged systematic time dependence but also in its fluctuations.Comment: 12 pages, RevTEX, 4 figures in eps forma

    Statistical properties of random density matrices

    Full text link
    Statistical properties of ensembles of random density matrices are investigated. We compute traces and von Neumann entropies averaged over ensembles of random density matrices distributed according to the Bures measure. The eigenvalues of the random density matrices are analyzed: we derive the eigenvalue distribution for the Bures ensemble which is shown to be broader then the quarter--circle distribution characteristic of the Hilbert--Schmidt ensemble. For measures induced by partial tracing over the environment we compute exactly the two-point eigenvalue correlation function.Comment: 8 revtex pages with one eps file included, ver. 2 - minor misprints correcte

    Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering for systems with broken time reversal invariance

    Full text link
    Assuming the validity of random matrices for describing the statistics of a closed chaotic quantum system, we study analytically some statistical properties of the S-matrix characterizing scattering in its open counterpart. In the first part of the paper we attempt to expose systematically ideas underlying the so-called stochastic (Heidelberg) approach to chaotic quantum scattering. Then we concentrate on systems with broken time-reversal invariance coupled to continua via M open channels. By using the supersymmetry method we derive: (i) an explicit expression for the density of S-matrix poles (resonances) in the complex energy plane (ii) an explicit expression for the parametric correlation function of densities of eigenphases of the S-matrix. We use it to find the distribution of derivatives of these eigenphases with respect to the energy ("partial delay times" ) as well as with respect to an arbitrary external parameter.Comment: 51 pages, RevTEX , three figures are available on request. To be published in the special issue of the Journal of Mathematical Physic

    Quenched Computation of the Complexity of the Sherrington-Kirkpatrick Model

    Full text link
    The quenched computation of the complexity in the Sherrington-Kirkpatrick model is presented. A modified Full Replica Symmetry Breaking Ansatz is introduced in order to study the complexity dependence on the free energy. Such an Ansatz corresponds to require Becchi-Rouet-Stora-Tyutin supersymmetry. The complexity computed this way is the Legendre transform of the free energy averaged over the quenched disorder. The stability analysis shows that this complexity is inconsistent at any free energy level but the equilibirum one. The further problem of building a physically well defined solution not invariant under supersymmetry and predicting an extensive number of metastable states is also discussed.Comment: 19 pages, 13 figures. Some formulas added corrected, changes in discussion and conclusion, one figure adde

    Probability distributions of Linear Statistics in Chaotic Cavities and associated phase transitions

    Full text link
    We establish large deviation formulas for linear statistics on the NN transmission eigenvalues {Ti}\{T_i\} of a chaotic cavity, in the framework of Random Matrix Theory. Given any linear statistics of interest A=i=1Na(Ti)A=\sum_{i=1}^N a(T_i), the probability distribution PA(A,N)\mathcal{P}_A(A,N) of AA generically satisfies the large deviation formula limN[2logPA(Nx,N)/βN2]=ΨA(x)\lim_{N\to\infty}[-2\log\mathcal{P}_A(Nx,N)/\beta N^2]=\Psi_A(x), where ΨA(x)\Psi_A(x) is a rate function that we compute explicitly in many cases (conductance, shot noise, moments) and β\beta corresponds to different symmetry classes. Using these large deviation expressions, it is possible to recover easily known results and to produce new formulas, such as a closed form expression for v(n)=limNvar(Tn)v(n)=\lim_{N\to\infty}\mathrm{var}(\mathcal{T}_n) (where Tn=iTin\mathcal{T}_n=\sum_{i}T_i^n) for arbitrary integer nn. The universal limit v=limnv(n)=1/2πβv^\star=\lim_{n\to\infty} v(n)=1/2\pi\beta is also computed exactly. The distributions display a central Gaussian region flanked on both sides by non-Gaussian tails. At the junction of the two regimes, weakly non-analytical points appear, a direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also provided, which are in full agreement with our asymptotic results in both real and Laplace space even for moderately small NN. Part of the results have been announced in [P. Vivo, S.N. Majumdar and O. Bohigas, {\it Phys. Rev. Lett.} {\bf 101}, 216809 (2008)].Comment: 31 pages, 16 figures. To appear in Phys. Rev. B. Added section IVD about comparison with other theories and numerical simulation

    Distribution of G-concurrence of random pure states

    Full text link
    Average entanglement of random pure states of an N x N composite system is analyzed. We compute the average value of the determinant D of the reduced state, which forms an entanglement monotone. Calculating higher moments of the determinant we characterize the probability distribution P(D). Similar results are obtained for the rescaled N-th root of the determinant, called G-concurrence. We show that in the limit NN\to\infty this quantity becomes concentrated at a single point G=1/e. The position of the concentration point changes if one consider an arbitrary N x K bipartite system, in the joint limit N,KN,K\to\infty, K/N fixed.Comment: RevTeX4, 11 pages, 4 Encapsuled PostScript figures - Introduced new results, Section II and V have been significantly improved - To appear on PR

    The density of stationary points in a high-dimensional random energy landscape and the onset of glassy behaviour

    Full text link
    We calculate the density of stationary points and minima of a N1N\gg 1 dimensional Gaussian energy landscape. We use it to show that the point of zero-temperature replica symmetry breaking in the equilibrium statistical mechanics of a particle placed in such a landscape in a spherical box of size L=RNL=R\sqrt{N} corresponds to the onset of exponential in NN growth of the cumulative number of stationary points, but not necessarily the minima. For finite temperatures we construct a simple variational upper bound on the true free energy of the R=R=\infty version of the problem and show that this approximation is able to recover the position of the whole de-Almeida-Thouless line.Comment: a revised and shortened version with a few typos corrected and references added. To appear in JETP Letter
    corecore