1 research outputs found

    Quantum Langevin equations for semiconductor light-emitting devices and the photon statistics at a low-injection level

    Full text link
    From the microscopic quantum Langevin equations (QLEs) we derive the effective semiconductor QLEs and the associated noise correlations which are valid at a low-injection level and in real devices. Applying the semiconductor QLEs to semiconductor light-emitting devices (LEDs), we obtain a new formula for the Fano factor of photons which gives the photon-number statistics as a function of the pump statistics and several parameters of LEDs. Key ingredients are non-radiative processes, carrier-number dependence of the radiative and non-radiative lifetimes, and multimodeness of LEDs. The formula is applicable to the actual cases where the quantum efficiency η\eta differs from the differential quantum efficiency ηd\eta_{d}, whereas previous theories implicitly assumed η=ηd\eta = \eta_{d}. It is also applicable to the cases when photons in each mode of the cavity are emitted and/or detected inhomogeneously. When ηd<η\eta_{d} < \eta at a running point, in particular, our formula predicts that even a Poissonian pump can produce sub-Poissonian light. This mechanism for generation of sub-Poissonian light is completely different from those of previous theories, which assumed sub-Poissonian statistics for the current injected into the active layers of LEDs. Our results agree with recent experiments. We also discuss frequency dependence of the photon statistics.Comment: 10 pages, 8 figure
    corecore