8,489 research outputs found

    Polydimethylsiloxane based microfluidic diode

    Get PDF
    In this paper, we present a novel elastomer-based microfluidic device for rectifying flow. The device is analogous to an electronic diode in function since it allows flow in one direction and stops flow in the opposing direction. The device is planar, in-line and can be replica molded via standard soft lithography techniques. The fabrication process is outlined in detail and follows a simple procedure that requires only photolithography and one replica molding step. Several geometries of devices are presented along with their flow versus pressure characteristics. A brief discussion of the device behavior is presented along with possible uses for the device

    Formation of Low Threshold Voltage Microlasers

    Get PDF
    Vertical cavity surface emitting lasers (VCSELs) with threshold voltages of 1.7V have been fabricated. The resistance-area product in these new vertical cavity lasers is comparable to that of edge-emitting lasers, and threshold currents as low as 3 mA have been measured. Molecular beam epitaxy was used to grow n-type mirrors, a quantum well active region, and a heavily Be-doped p-contact. After contact definition and alloying, passive high-reflectivity mirrors were deposited by reactive sputter deposition of SiO2/Si3N4 to complete the laser cavity

    Room-Temperature Continuous-Wave Vertical-Cavity Single-Quantum-Well Microlaser Diodes

    Get PDF
    Room-temperature continuous and pulsed lasing of vertical-cavity, single-quantum-well, surface-emitting microlasers is achieved at ~983nm. The active Ga[sub][0-8]In[sub][0-2]As single quantum well is 100 [angstroms] thick. These microlasers have the smallest gain medium volumes among lasers ever built. The entire laser structure is grown by molecular beam epitaxy and the microlasers are formed by chemically assisted ion-beam etching. The microlasers are 3-50-ÎŒm across. The minimum threshold currents are 1.1 mA (pulsed) and 1.5 mA (CW)

    Methodological tests of the use of trace elements as tracers to assess root activity

    Get PDF
    peer-reviewedN.J.H. was funded by the Irish Research Council, co-funded by Marie Curie Actions under FP7. The field experiments A, B and G were supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under the grant agreements FP7-266018 (AnimalChange) and FP7- 244983 (MultiSward). Experiment F was supported by the German Science Foundation (FOR 456).Background and aims There is increasing interest in how resource utilisation in grassland ecosystems is affected by changes in plant diversity and abiotic conditions. Research to date has mainly focussed on aboveground responses and there is limited insight into belowground processes. The aim of this study was to test a number of assumptions for the valid use of the trace elements caesium, lithium, rubidium and strontium as tracers to assess the root activity of several grassland species. Methods We carried out a series of experiments addressing the reliability of soil labelling, injection density, incubation time, application rate and the comparability of different tracers in a multiple tracer method. Results The results indicate that it is possible to achieve a reliable labelling of soil depths. Tracer injection density affected the variability but not the mean level of plant tracer concentrations. Tracer application rates should be based on pilot studies, because of site- and species-specific responses. The trace elements did not meet prerequisites to be used in a multiple tracer method. Conclusions The use of trace elements as tracers is potentially a very useful tool to give insight into plant root activity at different soil depths. This work highlights some of the main benefits and pitfalls of the method and provides specific recommendations to assist the design of tracer experiments and interpretation of the results.N.J.H. was funded by the Irish Research Council, co-funded by Marie Curie Actions under FP7. The field experiments A, B and G were supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under the grant agreements FP7-266018 (AnimalChange) and FP7- 244983 (MultiSward). Experiment F was supported by the German Science Foundation (FOR 456).European Unio

    Low-Threshold Electrically Pumps Vertical-Cavity Surface-Emitting Microlasers

    Get PDF
    Vertical-cavity electrically driven lasers with three GaInAs quantum wells and diameters of several ÎŒm exhibit room-temperature pulsed current thresholds as low as 1.3mA with 958 nm output wavelength

    Strong Coupling Theory of Two Level Atoms in Periodic Fields

    Get PDF
    We present a new convergent strong coupling expansion for two-level atoms in external periodic fields, free of secular terms. As a first application, we show that the coherent destruction of tunnelling is a third-order effect. We also present an exact treatment of the high-frequency region, and compare it with the theory of averaging. The qualitative frequency spectrum of the transition probability amplitude contains an effective Rabi frequency.Comment: 4 pages with 3 figure

    Characterization of Alkali Metal Dispensers and Non-Evaporable Getter Pumps in Ultra-High Vacuum Systems for Cold Atomic Sensors

    Full text link
    A glass ultrahigh vacuum chamber with rubidium alkali metal dispensers and non-evaporable getter pumps has been developed and used to create a cold atomic sample in a chamber that operates with only passive vacuum pumps. The ion-mass spectrum of evaporated gases from the alkali metal dispenser has been recorded as a function of dispenser current. The efficacy of the non-evaporable getter pumps in promoting and maintaining vacuum has been characterized by observation of the Rb vapor optical absorption on the D2 transition at 780 nm and vacuum chamber pressure rate of rise tests. We have demonstrated a sample of laser-cooled Rb atoms in this chamber when isolated and operating without active vacuum pumps

    Critical points in a relativistic bosonic gas induced by the quantum structure of spacetime

    Full text link
    It is well known that phase transitions arise if the interaction among particles embodies an attractive as well as a repulsive contribution. In this work it will be shown that the breakdown of Lorentz symmetry, characterized through a deformation in the relation dispersion, plus the bosonic statistics predict the emergence of critical points. In other words, in some quantum gravity models the structure of spacetime implies the emergence of critical points even when no interaction among the particle has been considered.Comment: 5 pages, no figure

    Ultranarrow conducting channels defined in GaAs-AlGaAs by low-energy ion damage

    Get PDF
    We have laterally patterned the narrowest conducting wires of two-dimensional electron gas (2DEG) material reported to date. The depletion induced by low-energy ion etching of GaAs-AlGaAs 2DEG structures was used to define narrow conducting channels. We employed high voltage electron beam lithography to create a range of channel geometries with widths as small as 75 nm. Using ion beam assisted etching by Cl2 gas and Ar ions with energies as low as 150 eV, conducting channels were defined by etching only through the thin GaAs cap layer. This slight etching is sufficient to entirely deplete the underlying material without necessitating exposure of the sidewalls that results in long lateral depletion lengths. At 4.2 K, without illumination, our narrowest wires retain a carrier density and mobility at least as high as that of the bulk 2DEG and exhibit quantized Hall effects. Aharonov–Bohm oscillations are seen in rings defined by this controlled etch-damage patterning. This patterning technique holds promise for creating one-dimensional conducting wires of even smaller sizes
    • 

    corecore