5,202 research outputs found
Single photon quantum non-demolition in the presence of inhomogeneous broadening
Electromagnetically induced transparency (EIT) has been often proposed for
generating nonlinear optical effects at the single photon level; in particular,
as a means to effect a quantum non-demolition measurement of a single photon
field. Previous treatments have usually considered homogeneously broadened
samples, but realisations in any medium will have to contend with inhomogeneous
broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys.
Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an
alternative mode of operation that is preferred in an inhomogeneous
environment. We further show the implications of these results on a potential
implementation in diamond containing nitrogen-vacancy colour centres. Our
modelling shows that single mode waveguide structures of length in single-crystal diamond containing a dilute ensemble of NV
of only 200 centres are sufficient for quantum non-demolition measurements
using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv
purpose
Normal, Abby Normal, Prefix Normal
A prefix normal word is a binary word with the property that no substring has
more 1s than the prefix of the same length. This class of words is important in
the context of binary jumbled pattern matching. In this paper we present
results about the number of prefix normal words of length , showing
that for some and
. We introduce efficient
algorithms for testing the prefix normal property and a "mechanical algorithm"
for computing prefix normal forms. We also include games which can be played
with prefix normal words. In these games Alice wishes to stay normal but Bob
wants to drive her "abnormal" -- we discuss which parameter settings allow
Alice to succeed.Comment: Accepted at FUN '1
Ancilla-based quantum simulation
We consider simulating the BCS Hamiltonian, a model of low temperature
superconductivity, on a quantum computer. In particular we consider conducting
the simulation on the qubus quantum computer, which uses a continuous variable
ancilla to generate interactions between qubits. We demonstrate an O(N^3)
improvement over previous work conducted on an NMR computer [PRL 89 057904
(2002) & PRL 97 050504 (2006)] for the nearest neighbour and completely general
cases. We then go on to show methods to minimise the number of operations
needed per time step using the qubus in three cases; a completely general case,
a case of exponentially decaying interactions and the case of fixed range
interactions. We make these results controlled on an ancilla qubit so that we
can apply the phase estimation algorithm, and hence show that when N \geq 5,
our qubus simulation requires significantly less operations that a similar
simulation conducted on an NMR computer.Comment: 20 pages, 10 figures: V2 added section on phase estimation and
performing controlled unitaries, V3 corrected minor typo
Integration of highly probabilistic sources into optical quantum architectures: perpetual quantum computation
In this paper we introduce a design for an optical topological cluster state
computer constructed exclusively from a single quantum component. Unlike
previous efforts we eliminate the need for on demand, high fidelity photon
sources and detectors and replace them with the same device utilised to create
photon/photon entanglement. This introduces highly probabilistic elements into
the optical architecture while maintaining complete specificity of the
structure and operation for a large scale computer. Photons in this system are
continually recycled back into the preparation network, allowing for a
arbitrarily deep 3D cluster to be prepared using a comparatively small number
of photonic qubits and consequently the elimination of high frequency,
deterministic photon sources.Comment: 19 pages, 13 Figs (2 Appendices with additional Figs.). Comments
welcom
Quantum Computation by Communication
We present a new approach to scalable quantum computing--a ``qubus
computer''--which realises qubit measurement and quantum gates through
interacting qubits with a quantum communication bus mode. The qubits could be
``static'' matter qubits or ``flying'' optical qubits, but the scheme we focus
on here is particularly suited to matter qubits. There is no requirement for
direct interaction between the qubits. Universal two-qubit quantum gates may be
effected by schemes which involve measurement of the bus mode, or by schemes
where the bus disentangles automatically and no measurement is needed. In
effect, the approach integrates together qubit degrees of freedom for
computation with quantum continuous variables for communication and
interaction.Comment: final published versio
Limits in the characteristic function description of non-Lindblad-type open quantum systems
In this paper I investigate the usability of the characteristic functions for
the description of the dynamics of open quantum systems focussing on
non-Lindblad-type master equations. I consider, as an example, a non-Markovian
generalized master equation containing a memory kernel which may lead to
nonphysical time evolutions characterized by negative values of the density
matrix diagonal elements [S.M. Barnett and S. Stenholm, Phys. Rev. A {\bf 64},
033808 (2001)]. The main result of the paper is to demonstrate that there exist
situations in which the symmetrically ordered characteristic function is
perfectly well defined while the corresponding density matrix loses positivity.
Therefore nonphysical situations may not show up in the characteristic
function. As a consequence, the characteristic function cannot be considered an
{\it alternative complete} description of the non-Lindblad dynamics.Comment: Revised version. 4 pages, 1 figur
A Time-Space Tradeoff for Triangulations of Points in the Plane
In this paper, we consider time-space trade-offs for reporting a triangulation of points in the plane. The goal is to minimize the amount of working space while keeping the total running time small. We present the first multi-pass algorithm on the problem that returns the edges of a triangulation with their adjacency information. This even improves the previously best known random-access algorithm
Proposal for the Measurement of Bell-like Correlations from Continuous Variables
We show theoretically that Bell-type correlations can be observed between
continuous variable measurements performed on a parametric source. An auxiliary
measurement, performed on the detection environment, negates the possibility of
constructing a local realistic description of these correlations
Preparation of Knill-Laflamme-Milburn states using tunable controlled phase gate
A specific class of partially entangled states known as
Knill-Laflamme-Milburn states (or KLM states) has been proved to be useful in
relation to quantum information processing [Knill et al., Nature 409, 46
(2001)]. Although the usage of such states is widely investigated, considerably
less effort has been invested into experimentally accessible preparation
schemes. This paper discusses the possibility to employ a tunable controlled
phase gate to generate an arbitrary Knill-Laflamme-Milburn state. In the first
part, the idea of using the controlled phase gate is explained on the case of
two-qubit KLM states. Optimization of the proposed scheme is then discussed for
the framework of linear optics. Subsequent generalization of the scheme to
arbitrary n-qubit KLM state is derived in the second part of this paper.Comment: 5 pages, 4 figures, accepted in Journal of Physics
- …