50,040 research outputs found
Adittional levels between Landau bands due to vacancies in graphene: towards a defect engineering
We describe the effects of vacancies on the electronic properties of a
graphene sheet in the presence of a perpendicular magnetic field: from a single
defect to an organized vacancy lattice. An isolated vacancy is the minimal
possible inner edge, showing an antidotlike behaviour, which results in an
extra level between consecutive Landau levels. Two close vacancies may couple
to each other, forming a vacancy molecule tuned by the magnetic field. We show
that a vacancy lattice introduce an extra band in between Landau levels with
localization properties that could lead to extra Hall resistance plateaus.Comment: 6 pages, 4 figures, few comments added after referees - accepted to
publication in Phys. Rev.
Valley polarization effects on the localization in graphene Landau levels
Effects of disorder and valley polarization in graphene are investigated in
the quantum Hall regime. We find anomalous localization properties for the
lowest Landau level (LL), where disorder can induce wavefunction delocalization
(instead of localization), both for white-noise and gaussian-correlated
disorder. We quantitatively identify the contribution of each sublattice to
wavefunction amplitudes. Following the valley (sublattice) polarization of
states within LLs for increasing disorder we show: (i) valley mixing in the
lowest LL is the main effect behind the observed anomalous localization
properties, (ii) the polarization suppression with increasing disorder depends
on the localization for the white-noise model, while, (iii) the disorder
induces a partial polarization in the higher Landau levels for both disorder
models.Comment: 5 pages, 6 figures, extended version, with 2 new figures adde
Inner and outer edge states in graphene rings: A numerical investigation
We numerically investigate quantum rings in graphene and find that their
electronic properties may be strongly influenced by the geometry, the edge
symmetries and the structure of the corners. Energy spectra are calculated for
different geometries (triangular, hexagonal and rhombus-shaped graphene rings)
and edge terminations (zigzag, armchair, as well as the disordered edge of a
round geometry). The states localized at the inner edges of the graphene rings
describe different evolution as a function of magnetic field when compared to
those localized at the outer edges. We show that these different evolutions are
the reason for the formation of sub-bands of edge states energy levels,
separated by gaps (anticrossings). It is evident from mapping the charge
densities that the anticrossings occur due to the coupling between inner and
outer edge states.Comment: 8 pages, 7 figures. Figures in low resolution due to size
requirements - higher quality figures on reques
How hole defects modify vortex dynamics in ferromagnetic nanodisks
Defects introduced in ferromagnetic nanodisks may deeply affect the structure
and dynamics of stable vortex-like magnetization. Here, analytical techniques
are used for studying, among other dynamical aspects, how a small cylindrical
cavity modify the oscillatory modes of the vortex. For instance, we have
realized that if the vortex is nucleated out from the hole its gyrotropic
frequencies are shifted below. Modifications become even more pronounced when
the vortex core is partially or completely captured by the hole. In these
cases, the gyrovector can be partially or completely suppressed, so that the
associated frequencies increase considerably, say, from some times to several
powers. Possible relevance of our results for understanding other aspects of
vortex dynamics in the presence of cavities and/or structural defects are also
discussed.Comment: 9 pages, 4 page
A model for structural defects in nanomagnets
A model for describing structural pointlike defects in nanoscaled
ferromagnetic materials is presented. Its details are explicitly developed
whenever interacting with a vortex-like state comprised in a thin nanodisk.
Among others, our model yields results for the vortex equilibrium position
under the influence of several defects along with an external magnetic field in
good qualitative agreement with experiments. We also discuss how such defects
may affect the vortex motion, like its gyrotropic oscillation and dynamical
polarization reversal.Comment: 8 pages, resubmitted to Journal of Applied Physic
- …