7 research outputs found

    Novel copy number variants in children with autism and additional developmental anomalies

    Get PDF
    Autism is a neurodevelopmental disorder characterized by three core symptom domains: ritualistic-repetitive behaviors, impaired social interaction, and impaired communication and language development. Recent studies have highlighted etiologically relevant recurrent copy number changes in autism, such as 16p11.2 deletions and duplications, as well as a significant role for unique, novel variants. We used Affymetrix 250K GeneChip Microarray technology (either NspI or StyI) to detect microdeletions and duplications in a subset of children from the Autism Genetic Resource Exchange (AGRE). In order to enrich our sample for potentially pathogenic CNVs we selected children with autism who had additional features suggestive of chromosomal loss associated with developmental disturbance (positive criteria filter) but who had normal cytogenetic testing (negative criteria filter). We identified families with the following features: at least one child with autism who also had facial dysmorphology, limb or digit abnormalities, or ocular abnormalities. To detect changes in copy number we used a publicly available program, Copy Number Analyser for GeneChip® (CNAG) Ver. 2.0. We identified novel deletions and duplications on chromosomes 1q24.2, 3p26.2, 4q34.2, and 6q24.3. Several of these deletions and duplications include new and interesting candidate genes for autism such as syntaxin binding protein 5 (STXBP5 also known as tomosyn) and leucine rich repeat neuronal 1 (LRRN1 also known as NLRR1). Lastly, our data suggest that rare and potentially pathogenic microdeletions and duplications may have a substantially higher prevalence in children with autism and additional developmental anomalies than in children with autism alone

    Graphene oxide as passively Q - switched modulator for ceramic Nd:YAG laser

    No full text
    W artykule przedstawione zostały wyniki eksperymentów generacyjnych, w układzie lasera na ceramice Nd:YAG z pasywnym modulatorem dobroci zbudowanym na bazie tlenku grafenu. Opisano sposób przygotowania próbek tlenku grafenu na podłożu płytek szkła SiO2, zbudowane stanowisko lasera oraz sposób przeprowadzenia pomiarów. Badany tlenek grafenu, wytworzony w Instytucie Technologii Materiałów Elektronicznych, wykazał właściwości nasycalnego absorbera. Zastosowanie tlenku grafenu o transmitancji w zakresie 80 ÷ 86 % pozwoliło uzyskać na wyjściu lasera generację impulsową o częstotliwości w zakresie 54 ÷ 250 kHz. Zarejestrowana maksymalna średnia moc wyjściowa lasera wynosiła Pśr = 330 mW.This paper presents the results of generation experiments in the setup of a ceramic Nd: YAG laser with grapheme oxide as a passive Q - switched modulator. The preparation method of graphene oxide samples on the surface of SiO2 glass, the arrangement of the laser setup and the measurement method are also described. The studied graphene oxide produced at the Institute of Electronic Materials Technology showed the properties of a saturable absorber. The application of grapheme oxide with transmittance in the range of (80 - 86) % allowed the pulse laser operation in the frequency range of (54 - 250) kHz. The maximum recorded average output power of the laser was Pav = 330 mW

    Structural and Electronic Properties of Graphene Oxide and Reduced Graphene Oxide Papers Prepared by High Pressure and High Temperature Treatment

    No full text
    "Graphene paper" prepared by new proprietary method involving high pressure and high temperature treatment in the reduction process show new possibilities in this area. Different phase content: multilayer and single layer graphene stacks recorded in this study for RGO samples are accompanied by the specific electric and optical parameters. We have found that process temperatures above 900°C play crucial role in structural and other properties. For the process temperature around 2000°C we found the onset of the graphitization in the samples
    corecore