244 research outputs found

    Are CP Violating Effects in the Standard Model Really Tiny?

    Full text link
    We derive an effective action of the bosonic sector of the Standard Model by integrating out the fermionic degrees of freedom in the worldline approach. The CP violation due to the complex phase in the CKM matrix gives rise to CP-violating operators in the effective action. We calculate the prefactor of the appropriate next-to-leading order operators and give general estimates of CP violation in the bosonic sector of the Standard Model. In particular, we show that the effective CP violation for weak gauge fields is not suppressed by the Yukawa couplings of the light quarks and is much larger than the bound given by the Jarlskog determinant.Comment: 4 pages. To appear in the proceedings of the 8th Conference on Strong and Electroweak Matter (SEWM08), Amsterdam, the Netherlands, 26-29 August 200

    On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence

    Full text link
    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an `anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∌10%\sim 10 \% effect, and plausibly smaller.Comment: 25+5 pages, 10 figures, comments added, matches published versio

    Testing hydrodynamics schemes in galaxy disc simulations

    Get PDF
    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretised meshless code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or gizmo runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMOruns and secondary spiral arms are more pronounced. By resolving the Jeans’ length with a greater number of grid cells we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of gizmo (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and timescales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations

    Some Cosmological Implications of Hidden Sectors

    Get PDF
    We discuss some cosmological implications of extensions of the Standard Model with hidden sector scalars coupled to the Higgs boson. We put special emphasis on the conformal case, in which the electroweak symmetry is broken radiatively with a Higgs mass above the experimental limit. Our refined analysis of the electroweak phase transition in this kind of models strengthens the prediction of a strongly first-order phase transition as required by electroweak baryogenesis. We further study gravitational wave production and the possibility of low-scale inflation as well as a viable dark matter candidate.Comment: 23 pages, 8 figures; some comments added, published versio

    Cold electroweak baryogenesis with Standard Model CP violation

    Get PDF
    AbstractWe study a mechanism that generates the baryon asymmetry of the Universe during a tachyonic electroweak phase transition. We utilize as sole source of CP violation an operator that was recently obtained from the Standard Model by integrating out the quarks

    Supersonic Electroweak Baryogenesis: Achieving Baryogenesis for Fast Bubble Walls

    Full text link
    Standard electroweak baryogenesis in the context of a first order phase transition is effective in generating the baryon asymmetry of the universe if the broken phase bubbles expand at subsonic speed, so that CP asymmetric currents can diffuse in front of the wall. Here we present a new mechanism for electroweak baryogenesis which operates for supersonic bubble walls. It relies on the formation of small bubbles of the symmetric phase behind the bubble wall, in the broken phase, due to the heating of the plasma as the wall passes by. We apply the mechanism to a model in which the Higgs field is coupled to several singlets, and find that enough baryon asymmetry is generated for reasonable values of the parameter space

    Production of Gravitational Waves in the nMSSM

    Full text link
    During a strongly first-order phase transition gravitational waves are produced by bubble collisions and turbulent plasma motion. We analyze the relevant characteristics of the electroweak phase transition in the nMSSM to determine the generated gravitational wave signal. Additionally, we comment on correlations between the production of gravitational waves and baryogenesis. We conclude that the gravitational wave relic density in this model is generically too small to be detected in the near future by the LISA experiment. We also consider the case of a "Standard Model" with dimension-six Higgs potential, which leads to a slightly stronger signal of gravitational waves.Comment: 29 pages, 7 figures; published version, some comments adde

    Electroweak Baryogenesis in Non-minimal Composite Higgs Models

    Full text link
    We address electroweak baryogenesis in the context of composite Higgs models, pointing out that modifications to the Higgs and top quark sectors can play an important role in generating the baryon asymmetry. Our main observation is that composite Higgs models that include a light, gauge singlet scalar in the spectrum [as in the model based on the symmetry breaking pattern SO(6)/SO(5)], provide all necessary ingredients for viable baryogenesis. In particular, the singlet leads to a strongly first-order electroweak phase transition and introduces new sources of CP violation in dimension-five operators involving the top quark. We discuss the amount of baryon asymmetry produced and the experimental constraints on the model.Comment: 15 pages, 7 figure

    On Soft Limits of Large-Scale Structure Correlation Functions

    Full text link
    We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: The time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) `equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and `equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the `equal-time consistency conditions' quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.Comment: 22 pages, extended discussion, v3: matches published versio

    Strong electroweak phase transitions without collider traces

    Full text link
    We discuss the question if the upcoming generation of collider and low-energy experiments can successfully probe the nature of the electroweak phase transition. In particular, we are interested in phase transitions strong enough for electroweak baryogenesis or even for a production of gravitational radiation observable by the Big Bang Observer. As an explicit example, we present an analysis in a singlet extension of the Standard Model. We focus on the region in parameter space where the model develops no significant deviation in its low energy phenomenology from the Standard Model. Nevertheless, this class of models can develop a very strong phase transition.Comment: 20 pages, 6 figures, some comments and references adde
    • 

    corecore