70 research outputs found
Istraživanje segregacije bora kod niskougljičnih čelika
Traces of born in the range 0,002-0,009 % are usually added to many grades of steel. The effect of boron on phase transformations and hardenability of low carbon low alloy steels depends on the form of its behavior in solid solution either in segregations or in precipitations. Temperature and cooling rate determine the existence of boron segregations on grain boundaries. In present paper simulations of boron concentrations were calculated with computer programme DICTRA for low carbon 0,08 %C steel with 0,006 % boron. Investigations were carried out for temperature 1300 – 700°C and cooling rates from 1°C/s to 100°C/s. The changes of boron concentrations in austenite and ferrite after commencement of γ→α phase transformation were established.Tragovi bora u rasponu 0,002-0,009 % se obično dodaju mnogim tipovima čelika. Utjecaj bora na fazne transformacije i zakaljivost niskougljičnih niskolegiranih čelika ovisi o obliku njegovog ponašanja u čvrstoj otpini ili u segregacijama ili u precipitatima. Temperatura i brzina hlađenja određuju postojanje segregacija bora na granicama zrna. U ovom radu simulacije koncentracija bora su proračunate pomoću kompjutorskog programa DICTRA za niskougljični čelik s 0,08 % C i 0,006 % bora. Istraživanja su provedena ta temperature 1 300–700°C i brzine hlađenja od 1°C/s do 100°C/s. Utvrđene su promjene koncentracije bora u austenitu i feritu nakon početka γ→α fazne transformacije
Istraživanje segregacije bora kod niskougljičnih čelika
Traces of born in the range 0,002-0,009 % are usually added to many grades of steel. The effect of boron on phase transformations and hardenability of low carbon low alloy steels depends on the form of its behavior in solid solution either in segregations or in precipitations. Temperature and cooling rate determine the existence of boron segregations on grain boundaries. In present paper simulations of boron concentrations were calculated with computer programme DICTRA for low carbon 0,08 %C steel with 0,006 % boron. Investigations were carried out for temperature 1300 – 700°C and cooling rates from 1°C/s to 100°C/s. The changes of boron concentrations in austenite and ferrite after commencement of γ→α phase transformation were established.Tragovi bora u rasponu 0,002-0,009 % se obično dodaju mnogim tipovima čelika. Utjecaj bora na fazne transformacije i zakaljivost niskougljičnih niskolegiranih čelika ovisi o obliku njegovog ponašanja u čvrstoj otpini ili u segregacijama ili u precipitatima. Temperatura i brzina hlađenja određuju postojanje segregacija bora na granicama zrna. U ovom radu simulacije koncentracija bora su proračunate pomoću kompjutorskog programa DICTRA za niskougljični čelik s 0,08 % C i 0,006 % bora. Istraživanja su provedena ta temperature 1 300–700°C i brzine hlađenja od 1°C/s do 100°C/s. Utvrđene su promjene koncentracije bora u austenitu i feritu nakon početka γ→α fazne transformacije
3D Bioprinting of Stem Cells and Polymer/Bioactive Glass Composite Scaffolds for Bone Tissue Engineering
A major limitation of using synthetic scaffolds in tissue engineering applications is insufficient angiogenesis in scaffold interior. Bioactive borate glasses have been shown to promote angiogenesis. There is a need to investigate the biofabrication of polymer composites by incorporating borate glass to increase the angiogenic capacity of the fabri-cated scaffolds. In this study, we investigated the bioprinting of human adipose stem cells (ASCs) with a polycaprolac-tone (PCL)/bioactive borate glass composite. Borate glass at the concentration of 10 to 50 weight %, was added to a mixture of PCL and organic solvent to make an extrudable paste. ASCs suspended in Matrigel were ejected as droplets using a second syringe. Scaffolds measuring 10 x 10 x 1 mm3 in overall dimensions with pore sizes ranging from 100 - 300 µm were fabricated. Degradation of the scaffolds in cell culture medium showed a controlled release of bioactive glass for up to two weeks. The viability of ASCs printed on the scaffold was investigated during the same time period. This 3D bioprinting method shows a high potential to create a bioactive, highly angiogenic three-dimensional environ-ment required for complex and dynamic interactions that govern the cell\u27s behavior in vivo
Linear response of vibrated granular systems to sudden changes in the vibration intensity
The short-term memory effects recently observed in vibration-induced
compaction of granular materials are studied. It is shown that they can be
explained by means of quite plausible hypothesis about the mesoscopic
description of the evolution of the system. The existence of a critical time
separating regimes of ``anomalous'' and ``normal'' responses is predicted. A
simple model fitting into the general framework is analyzed in the detail. The
relationship between this work and previous studies is discussed.Comment: 10 pages, 6 figures; fixed errata, updtated reference
Solvent Based 3D Printing of Biopolymer/Bioactive Glass Composite and Hydrogel for Tissue Engineering Applications
Three-dimensional (3D) bioprinting is an emerging technology in which scaffolding materials and cell-laden hydrogels may be deposited in a pre-determined fashion to create 3D porous constructs. A major challenge in 3D bioprinting is the slow degradation of melt deposited biopolymer. In this paper, we describe a new method for printing poly-caprolactone (PCL)/bioactive borate glass composite as a scaffolding material and Pluronic F127 hydrogel as a cell suspension medium. Bioactive borate glass was added to a mixture of PCL and organic solvent to make an extrudable paste using one syringe while hydrogel was extruded and deposited in between the PCL/borate glass filaments using a second syringe. The degradation of the PCL/borate glass composite scaffold with and without the presence of hydrogel was investigated by soaking the scaffold in minimum essential medium. The weight loss of the scaffold together with formation of a hydroxyapatite-like layer on the surface shows the excellent bioactivity of the scaffold
Near-Field Electrospinning of a Polymer/Bioactive Glass Composite to Fabricate 3D Biomimetic Structures
Bioactive glasses have recently gained attention in tissue engineering and three-dimensional (3D) bioprinting because of their ability to enhance angiogenesis. Some challenges for developing biological tissues with bioactive glasses include incorporation of glass particles and achieving a 3D architecture mimicking natural tissues. In this study, we investigate the fabrication of scaffolds with a polymer/bioactive glass composite using near-field electrospinning (NFES). An overall controlled 3D scaffold with pores, containing random fibers, is created and aimed to provide superior cell proliferation. Highly angiogenic borate bioactive glass (13-93B3) in 20 wt.% is added to polycaprolactone (PCL) to fabricate scaffolds using the NFES technique. Scaffolds measuring 5 mm x 5 mm x 0.2 mm 3 in overall dimensions were seeded with human adipose-derived mesenchymal stem cells to investigate the cell viability. The cell viability on PCL and PCL+glass scaffolds fabricated using NFES technique and 3D printing is compared and discussed. The results indicated higher cell proliferation on 3D biomimetic scaffolds fabricated by NFES technique
Memory Effects in Granular Material
We present a combined experimental and theoretical study of memory effects in
vibration-induced compaction of granular materials. In particular, the response
of the system to an abrupt change in shaking intensity is measured. At short
times after the perturbation a granular analog of aging in glasses is observed.
Using a simple two-state model, we are able to explain this short-time
response.
We also discuss the possibility for the system to obey an approximate
pseudo-fluctuation-dissipation theorem relationship and relate our work to
earlier experimental and theoretical studies of the problem.Comment: 5 pages, 4 figures, reference list change
Energy-dependent Ps-He momentum-transfer cross section at low energies
Positronium (Ps)-He scattering presents one of the few opportunities for both theory and experiment to tackle the fundamental interactions of Ps with ordinary matter. Below the dissociation energy of 6.8 eV, experimental and theoretical work has struggled to find agreement on the strength of this interaction as measured by the momentum-transfer cross section (Ïm). Here, we present work utilizing the Doppler broadening technique with an age-momentum correlation apparatus. This work demonstrates a strong energy dependence for this cross section at energies below 1 eV and is consistent with previous experimental results
Reversible Random Sequential Adsorption of Dimers on a Triangular Lattice
We report on simulations of reversible random sequential adsorption of dimers
on three different lattices: a one-dimensional lattice, a two-dimensional
triangular lattice, and a two-dimensional triangular lattice with the nearest
neighbors excluded. In addition to the adsorption of particles at a rate K+, we
allow particles to leave the surface at a rate K-. The results from the
one-dimensional lattice model agree with previous results for the continuous
parking lot model. In particular, the long-time behavior is dominated by
collective events involving two particles. We were able to directly confirm the
importance of two-particle events in the simple two-dimensional triangular
lattice. For the two-dimensional triangular lattice with the nearest neighbors
excluded, the observed dynamics are consistent with this picture. The
two-dimensional simulations were motivated by measurements of Ca++ binding to
Langmuir monolayers. The two cases were chosen to model the effects of changing
pH in the experimental system.Comment: 9 pages, 10 figure
- …