1,058 research outputs found
Bars and Cold Dark Matter Halos
The central part of a dark matter halo reacts to the presence and evolution
of a bar. Not only does the halo absorb angular momentum from the disk, it can
also be compressed and have its shape modified. We study these issues in a
series of cosmologically motivated, highly resolved N-body simulations of
barred galaxies run under different initial conditions. In all models we find
that the inner halo's central density increases. We model this density increase
using the standard adiabatic approximation and the modified formula by Gnedin
et al. and find that halo mass profiles are better reproduced by this latter.
In models with a strong bar, the dark matter in the central region forms a
bar-like structure (``dark matter bar''), which rotates together with the
normal bar formed by the stellar component (``stellar bar''). The
minor-to-major axial ratio of a halo bar changes with radius with a typical
value 0.7 in the central disk region. DM bar amplitude is mostly a function of
the stellar bar strength. Models in which the bar amplitude increases or stays
roughly constant with time, initially large (40%-60%) misalignment between the
halo and disk bars quickly decreases with time as the bar grows. The halo bar
is nearly aligned with the stellar bar (~10 degrees lag for the halo) after ~2
Gyr. The torque, which the halo bar exerts on the stellar bar, can serve as a
mechanism to regulate the angular momentum transfer from the disk to the halo.Comment: Modified version after referee's suggestions. 17 pages, 12 figures,
accepted by Ap
Astrophysical inputs on the SUSY dark matter annihilation detectability
If dark matter (DM), which is considered to constitute most of the mass of
galaxies, is made of supersymmetric (SUSY) particles, the centers of galaxies
should emit gamma-rays produced by their self-annihilation. We present accurate
estimates of continuum gamma-ray fluxes due to neutralino annihilation in the
central regions of the Milky Way. We use detailed models of our Galaxy, which
satisfy available observational data, and include some important physical
processes, which were previously neglected. Our models predict that spatially
extended annihilation signal should be detected at high confidence levels by
incoming experiments assuming that neutralinos make up most of the DM in the
Universe and that they annihilate according to current SUSY models.Comment: 4 pages, submitted to Physical Review Letter
Voids in the Local Volume: a limit on appearance of a galaxy in a DM halo
Current explanation of the overabundance of dark matter subhalos in the Local
Group (LG) indicates that there maybe a limit on mass of a halo, which can host
a galaxy. This idea can be tested using voids in the distribution of galaxies:
at some level small voids should not contain any (even dwarf) galaxies. We use
observational samples complete to M_B = -12 with distances less than 8 Mpc to
construct the void function (VF): the distribution of sizes of voids empty of
any galaxies. There are ~30 voids with sizes ranging from 1 to 5 Mpc. We then
study the distribution of dark matter halos in very high resolution simulations
of the LCDM model. The theoretical VF matches the observations remarkably well
only if we use halos with circular velocities larger than 45 +/- 10 km/s. This
agrees with the Local Group predictions. There are smaller halos in the voids,
but they should not produce any luminous matter. Small voids look quite similar
to their giant cousins: the density has a minimum at the center of a void and
it increases as we get closer to the border. Small nonluminous halos inside the
void form a web of tiny filaments. Thus, both the Local Group data and the
nearby voids indicate that isolated halos below 45 +/- 10 km/s must not host
galaxies and that small (few Mpc) voids are truly dark.Comment: 5 pages, 1 figur
Hydrodynamical simulations of galaxy properties: Environmental effects
Using N-body+hydro simulations we study relations between the local
environments of galaxies on 0.5 Mpc scale and properties of the luminous
components of galaxies. Our numerical simulations include effects of star
formation and supernova feedback in different cosmological scenarios: the
standard Cold Dark Matter model, the Broken Scale Invariance model (BSI), and a
model with cosmological constant (LCDM).
In this paper, we concentrate on the effects of environment on colors and
morphologies of galaxies, on the star formation rate and on the relation
between the total luminosity of a galaxy and its circular velocity. We
demonstrate a statistically significant theoretical relationship between
morphology and environment. In particular, there is a strong tendency for
high-mass galaxies and for elliptical galaxies to form in denser environments,
in agreement with observations. We find that in models with denser environments
(CDM scenario) ~ 13 % of the galactic halos can be identified as field
ellipticals, according to their colors. In simulations with less clustering
(BSI and LCDM), the fraction of ellipticals is considerably lower (~ 2-3 %).
The strong sensitivity of morphological type to environment is rather
remarkable because our results are applicable to ``field'' galaxies and small
groups. If all galaxies in our simulations are included, we find a
statistically significant dependence of the galaxy luminosity - circular
velocity relation on dark matter overdensity within spheres of radius 0.5 Mpc,
for the CDM simulations. But if we remove ``elliptical'' galaxies from our
analysis to mimic the Tully-Fisher relation for spirals, then no dependence is
found in any model.Comment: 44 pages, 21 figures (17 included). Submitted to New Astronomy. GIFF
color plots and the complete paper in Postscript (including color figures)
can be found at http://astrosg.ft.uam.es/~gustavo/newas
- …