99 research outputs found

    Measurement of the 6Li(e,e'p) reaction cross sections at low momentum transfer

    Full text link
    The triple differential cross sections for the 6Li(e,e'p) reaction have been measured in the excitation energy region from 27 to 46 MeV in a search for evidence of the giant dipole resonance (GDR) in 6Li. The cross sections have no distinct structures in this energy region, and decrease smoothly with the energy transfer. Angular distributions are different from those expected with the GDR. Protons are emitted strongly in the momentum-transfer direction. The data are well reproduced by a DWIA calculation assuming a direct proton knockout process.Comment: 19 pages, 7 figures, revised text, to be published in Nucl. Phys.

    Genetic Determinants of Amidating Enzyme Activity and its Relationship with Metal Cofactors in Human Serum

    Get PDF
    Abstract BACKGROUND: α-amidation is a final, essential step in the biosynthesis of about half of all peptide hormones and neurotransmitters. Peptidylglycine α-amidating monooxygenase (PAM), with enzymatic domains that utilize Cu and Zn, is the only enzyme that catalyzes this reaction. PAM activity is detected in serum, but its significance and utility as a clinical biomarker remain unexplored. METHODS: We used well-established enzymatic assays specific for the peptidylglycine-α -hydroxylating monooxygenase (PHM) and peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domains of PAM to quantify amidating activity in the sera of 144 elderly men. Relationships between PHM and PAL activity and serum levels of their respective active-site metals, Cu and Zn, were analyzed. Study participants were also genotyped for eight non-coding single nucleotide polymorphisms (SNPs) in PAM, and relationships between genotype and serum enzyme activity and metal levels were analyzed. RESULTS: Serum PHM and PAL activities were normally distributed and correlated linearly with each other. Serum PAL activity, but not serum PHM activity, correlated with serum Cu; neither activity correlated with serum Zn. Study subjects possessing the minor alleles for rs32680 had lower PHM and PAL activities, and subjects with minor alleles for rs11952361 and rs10515341 had lower PHM activities. CONCLUSIONS: Our results characterize large variation in serum amidating activity and provide unique insight into its potential origin and determinants. Common non-coding polymorphisms affect serum amidating activity and Cu levels. Serum amidating activity should be explored as a biomarker for functionality in the elderly and in additional study groups

    Inclusion of virtual nuclear excitations in the formulation of the (e,e'N)

    Get PDF
    A wave-function framework for the theory of the (e,e'N) reaction is presented in order to justify the use of coupled channel equations in the usual Feynman matrix element. The overall wave function containing the electron and nucleon coordinates is expanded in a basis set of eigenstates of the nuclear Hamiltonian, which contain both bound states as well as continuum states.. The latter have an ingoing nucleon with a variable momentum Q incident on the daughter nucleus as a target, with as many outgoing channels as desirable. The Dirac Eqs. for the electron part of the wave function acquire inhomogeneous terms, and require the use of distorted electron Green's functions for their solutions. The condition that the asymptotic wave function contain only the appropriate momentum Q_k for the outgoing nucleon, which corresponds to the electron momentum k through energy conservation, is achieved through the use of the steepest descent saddle point method, commonly used in three-body calculations.Comment: 30 page

    A Preliminary Analysis of Fatty Acid Synthesis in Pea Roots

    No full text

    N-Acylethanolamine Signaling in Tobacco Is Mediated by a Membrane-Associated, High-Affinity Binding Protein

    No full text
    N-Acylethanolamines (NAEs) are fatty acid derivatives found as minor constituents of animal and plant tissues, and their levels increase 10- to 50-fold in tobacco (Nicotiana tabacum) leaves treated with fungal elicitors. Infiltration of tobacco leaves with submicromolar to micromolar concentrations of N-myristoylethanolamine (NAE 14:0) resulted in an increase in relative phenylalanine ammonia-lyase (PAL) transcript abundance within 8 h after infiltration, and this PAL activation was reduced after co-infiltration with cannabinoid receptor antagonists (AM 281 and SR 144528). A saturable, high-affinity specific binding activity for [(3)H]NAE 14:0 was identified in suspension-cultured tobacco cells and in microsomes from tobacco leaves (apparent K(d) of 74 and 35 nm, respectively); cannabinoid receptor antagonists reduced or eliminated specific [(3)H]NAE 14:0 binding, consistent with the physiological response. N-Oleoylethanolamine activated PAL2 expression in leaves and diminished [(3)H]NAE 14:0 binding in microsomes, whereas N-linoleoylethanolamine did not activate PAL2 expression in leaves, and did not affect [(3)H]NAE 14:0 binding in microsomes. The nonionic detergent dodecylmaltoside solubilized functional [(3)H]NAE 14:0-binding activity from tobacco microsomal membranes. The dodecylmaltoside-solubilized NAE-binding activity retained similar, but not identical, binding properties to the NAE-binding protein(s) in intact tobacco microsomes. Additionally, high-affinity saturable NAE-binding proteins were identified in microsomes isolated from Arabidopsis and Medicago truncatula tissues, indicating the general prevalence of these binding proteins in plant membranes. We propose that plants possess an NAE-signaling pathway with functional similarities to the “endocannabinoid” pathway of animal systems and that this pathway, in part, participates in xylanase elicitor perception in tobacco
    • …
    corecore