474 research outputs found
Phase compatibilities of YBa2Cu3O(9-delta) type structure in quintenary systems Y-Ba-Cu-O-X (impurity)
Electrical transport properties of the oxidic high T(sub c) superconductors are significantly affected by the presence of minor amounts of various elements adventing as impurities, e.g., from the chemical environment during manufacturing. YBa2Cu3O(9-delta) is prone to an extinction of the superconductivity on (partial) substitution of all four elemental components. E.g., Pr (for Y), La (for Ba), Zn (for Cu) or peroxygroup (for O) substituents will alter some of the superconductivity preconditions, like mixed valence state in Cu3O7/O(9-delta) network or structural distortion of the network. Although various pseudoternary chemical equilibrium phase diagrams of the Y(O)-Ba(O)-Cu(O) system now are available, no consensus is generally shown, however, this is partly due to lack of compatible definitions of the equilibrium conditions. Less information is available about the phase compatibilities in the appropriate quaternary phase diagram (including oxygen) and virtually no information exists about any pentenary phase diagrams (including one impurity). Unfortunately, complexity of such systems, stemming both from number of quaternary or pentenary compounds and from visualizing the five-component phase system, limits this presentation to more or less close surroundings of the YBa2Cu3O(9-delta) type phase in appropriate pseudoquaternary or pseudopseudoternary diagrams, involving Y-Ba-Cu and O, O-CO2, alkaline metals, Mg and alkaline earths, and Sc and most of the 3-d and 4-f elements. The systems were investigated by means of x ray diffraction, neutron diffraction and chemical analytical methods on samples prepared by sol-gel technique from citrates. The superconductivity was characterized by measuring the diamagnetic susceptibility by SQUID
Compatibilities of YBa2Cu3O(9-delta) type phase in quintenary systems Y-Ba-Cu-O-X (impurity)
Isothermal phase diagrams at various oxygen pressures were studied by powder diffraction and chemical analytical methods. The components, Y, Ba, Cu, and O (specifically O2, O2-, and O2 sup 2-) are treated, together with C (specifically CO2 and CO2 sup 2-), alkaline metals, Mg, alkaline earths, Sc, 3-d and 4-f elements. Effects of the substitutions at the structural sites of YBa2Cu3O(9-delta) on T sub c are discussed with respect to changes in crystallochemical characteristics of the substituted phase and to the nature of the substituents
Anisotropy in the magnetic and electrical transport properties of Fe1-xCrxSb2
We have investigated anisotropy in magnetic and electrical transport
properties of Fe1-xCrxSb2 (0<= x <=1) single crystals. The magnetic ground
state of the system evolves from paramagnetic to antiferromagnetic with gradual
substitution of Fe with Cr. Anisotropy in electrical transport diminishes with
increased Cr substitution and fades away by x=0.5. We find that the variable
range hopping (VRH) conduction mechanism dominates at low temperatures for
0.4<= x <=0.75.Comment: 5 pages, 6 figure
Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides
It was reported earlier [Phys. Rev. Lett. 106, 056401 (2011)] that the
skutterudite structure compound CoSb displays a unique band structure with
a topological transition versus a symmetry-preserving sublattice (Sb)
displacement very near the structural ground state. The transition is through a
massless Dirac-Weyl semimetal, point Fermi surface phase which is unique in
that (1) it appears in a three dimensional crystal, (2) the band critical point
occurs at =0, and (3) linear bands are degenerate with conventional
(massive) bands at the critical point (before inclusion of spin-orbit
coupling). Further interest arises because the critical point separates a
conventional (trivial) phase from a topological phase. In the native cubic
structure this is a zero-gap topological semimetal; we show how spin-orbit
coupling and uniaxial strain converts the system to a topological insulator
(TI). We also analyze the origin of the linear band in this class of materials,
which is the characteristic that makes them potentially useful in
thermoelectric applications or possibly as transparent conductors. We
characterize the formal charge as Co , consistent with the gap, with
its site symmetry, and with its lack of moment. The Sb states are
characterized as (separately, ) -bonded ring states
occupied and the corresponding antibonding states empty. The remaining
(locally) orbitals form molecular orbitals with definite parity centered
on the empty site in the skutterudite structure. Eight such orbitals must
be occupied; the one giving the linear band is an odd orbital singlet
at the zone center. We observe that the provocative linearity of the band
within the gap is a consequence of the aforementioned near-degeneracy, which is
also responsible for the small band gap.Comment: 10 pages, 7 figure
Pressure-induced structural transitions in MgH
The stability of MgH has been studied up to 20~GPa using
density-functional total-energy calculations. At ambient pressure
-MgH takes a TiO-rutile-type structure. -MgH is
predicted to transform into -MgH at 0.39~GPa. The calculated
structural data for - and -MgH are in very good agreement
with experimental values. At equilibrium the energy difference between these
modifications is very small, and as a result both phases coexist in a certain
volume and pressure field. Above 3.84~GPa -MgH transforms into
-MgH; consistent with experimental findings. Two further
transformations have been identified at still higher pressure: i) - to
-MgH at 6.73 GPa and (ii) - to -MgH at
10.26~GPa.Comment: 4 pages, 4 figure
Valence-state mixing and separation in SmBaFe2O5+w
A mixed-valence state, formally denoted as Fe2.5+, is observed in the 300 K Mössbauer spectra of the most reduced samples of SmBaFe2O5+w. Upon cooling below the Verwey-type transition temperature (TV≈200K), the component assigned to Fe2.5+ separates into a high-spin Fe3+ state and an Fe2+ state with an unusually low internal field. The separation of the mixed-valence state at TV is also confirmed by magnetic susceptibility measurements and differential scanning calorimetry. A model is proposed which accounts for the variation of the amount of the mixed-valence state with the oxygen content parameter w.Peer reviewe
Valence-state mixing and separation in SmBaFe2O5+w
A mixed-valence state, formally denoted as Fe2.5+, is observed in the 300 K Mössbauer spectra of the most reduced samples of SmBaFe2O5+w. Upon cooling below the Verwey-type transition temperature (TV≈200K), the component assigned to Fe2.5+ separates into a high-spin Fe3+ state and an Fe2+ state with an unusually low internal field. The separation of the mixed-valence state at TV is also confirmed by magnetic susceptibility measurements and differential scanning calorimetry. A model is proposed which accounts for the variation of the amount of the mixed-valence state with the oxygen content parameter w.Peer reviewe
Low Temperature Neutron Diffraction Study of MnTe
Investigation of transport and magnetic properties of MnTe at low
temperatures sInvestigation of transport and magnetic properties of MnTe at low
temperatures showed anomalies like negative coefficient of resistance below
100K and a sharp rise in susceptibility at around 83K similar to a
ferromagnetic transition. Low temperature powder neutron diffraction
experiments were therefore carried out to understand the underlying phenomena
responsible for such anomalous behavior. Our study indicates that the rise in
susceptibility at low temperatures is due to strengthening of ferromagnetic
interaction within the plane over the inter plane antiferromagnetic
interactions.Comment: Appearing in J. Magn. Magn. Mate
- …