2,504 research outputs found

    Z_3-graded exterior differential calculus and gauge theories of higher order

    Full text link
    We present a possible generalization of the exterior differential calculus, based on the operator d such that d^3=0, but d^2\not=0. The first and second order differentials generate an associative algebra; we shall suppose that there are no binary relations between first order differentials, while the ternary products will satisfy the cyclic relations based on the representation of cyclic group Z_3 by cubic roots of unity. We shall attribute grade 1 to the first order differentials and grade 2 to the second order differentials; under the associative multiplication law the grades add up modulo 3. We show how the notion of covariant derivation can be generalized with a 1-form A, and we give the expression in local coordinates of the curvature 3-form. Finally, the introduction of notions of a scalar product and integration of the Z_3-graded exterior forms enables us to define variational principle and to derive the differential equations satisfied by the curvature 3-form. The Lagrangian obtained in this way contains the invariants of the ordinary gauge field tensor F_{ik} and its covariant derivatives D_i F_{km}.Comment: 13 pages, no figure

    The cubic chessboard

    Full text link
    We present a survey of recent results, scattered in a series of papers that appeared during past five years, whose common denominator is the use of cubic relations in various algebraic structures. Cubic (or ternary) relations can represent different symmetries with respect to the permutation group S_3, or its cyclic subgroup Z_3. Also ordinary or ternary algebras can be divided in different classes with respect to their symmetry properties. We pay special attention to the non-associative ternary algebra of 3-forms (or ``cubic matrices''), and Z_3-graded matrix algebras. We also discuss the Z_3-graded generalization of Grassmann algebras and their realization in generalized exterior differential forms. A new type of gauge theory based on this differential calculus is presented. Finally, a ternary generalization of Clifford algebras is introduced, and an analog of Dirac's equation is discussed, which can be diagonalized only after taking the cube of the Z_3-graded generalization of Dirac's operator. A possibility of using these ideas for the description of quark fields is suggested and discussed in the last Section.Comment: 23 pages, dedicated to A. Trautman on the occasion of his 64th birthda

    Traffic Network Optimum Principle - Minimum Probability of Congestion Occurrence

    Full text link
    We introduce an optimum principle for a vehicular traffic network with road bottlenecks. This network breakdown minimization (BM) principle states that the network optimum is reached, when link flow rates are assigned in the network in such a way that the probability for spontaneous occurrence of traffic breakdown at one of the network bottlenecks during a given observation time reaches the minimum possible value. Based on numerical simulations with a stochastic three-phase traffic flow model, we show that in comparison to the well-known Wardrop's principles the application of the BM principle permits considerably greater network inflow rates at which no traffic breakdown occurs and, therefore, free flow remains in the whole network.Comment: 22 pages, 6 figure

    General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems

    Full text link
    An asymptotic method for finding instabilities of arbitrary dd-dimensional large-amplitude patterns in a wide class of reaction-diffusion systems is presented. The complete stability analysis of 2- and 3-dimensional localized patterns is carried out. It is shown that in the considered class of systems the criteria for different types of instabilities are universal. The specific nonlinearities enter the criteria only via three numerical constants of order one. The performed analysis explains the self-organization scenarios observed in the recent experiments and numerical simulations of some concrete reaction-diffusion systems.Comment: 21 pages (RevTeX), 8 figures (Postscript). To appear in Phys. Rev. E (April 1st, 1996

    Cellular automata approach to three-phase traffic theory

    Full text link
    The cellular automata (CA) approach to traffic modeling is extended to allow for spatially homogeneous steady state solutions that cover a two dimensional region in the flow-density plane. Hence these models fulfill a basic postulate of a three-phase traffic theory proposed by Kerner. This is achieved by a synchronization distance, within which a vehicle always tries to adjust its speed to the one of the vehicle in front. In the CA models presented, the modelling of the free and safe speeds, the slow-to-start rules as well as some contributions to noise are based on the ideas of the Nagel-Schreckenberg type modelling. It is shown that the proposed CA models can be very transparent and still reproduce the two main types of congested patterns (the general pattern and the synchronized flow pattern) as well as their dependence on the flows near an on-ramp, in qualitative agreement with the recently developed continuum version of the three-phase traffic theory [B. S. Kerner and S. L. Klenov. 2002. J. Phys. A: Math. Gen. 35, L31]. These features are qualitatively different than in previously considered CA traffic models. The probability of the breakdown phenomenon (i.e., of the phase transition from free flow to synchronized flow) as function of the flow rate to the on-ramp and of the flow rate on the road upstream of the on-ramp is investigated. The capacity drops at the on-ramp which occur due to the formation of different congested patterns are calculated.Comment: 55 pages, 24 figure

    Localized defects in a cellular automaton model for traffic flow with phase separation

    Full text link
    We study the impact of a localized defect in a cellular automaton model for traffic flow which exhibits metastable states and phase separation. The defect is implemented by locally limiting the maximal possible flow through an increase of the deceleration probability. Depending on the magnitude of the defect three phases can be identified in the system. One of these phases shows the characteristics of stop-and-go traffic which can not be found in the model without lattice defect. Thus our results provide evidence that even in a model with strong phase separation stop-and-go traffic can occur if local defects exist. From a physical point of view the model describes the competition between two mechanisms of phase separation.Comment: 14 pages, 7 figure

    Solitons and kinks in a general car-following model

    Full text link
    We study a car-following model of traffic flow which assumes only that a car's acceleration depends on its own speed, the headway ahead of it, and the rate of change of headway, with only minimal assumptions about the functional form of that dependence. The velocity of uniform steady flow is found implicitly from the acceleration function, and its linear stability criterion can be expressed simply in terms of it. Crucially, unlike in previously analyzed car-following models, the threshold of absolute stability does not generally coincide with an inflection point in the steady velocity function. The Burgers and KdV equations can be derived under the usual assumptions, but the mKdV equation arises only when absolute stability does coincide with an inflection point. Otherwise, the KdV equation applies near absolute stability, while near the inflection point one obtains the mKdV equation plus an extra, quadratic term. Corrections to the KdV equation "select" a single member of the one-parameter set of soliton solutions. In previous models this has always marked the threshold of a finite- amplitude instability of steady flow, but here it can alternatively be a stable, small-amplitude jam. That is, there can be a forward bifurcation from steady flow. The new, augmented mKdV equation which holds near an inflection point admits a continuous family of kink solutions, like the mKdV equation, and we derive the selection criterion arising from the corrections to this equation.Comment: 25 page
    • …
    corecore