4 research outputs found

    Age-adjusted Charlson comorbidity index in recurrent glioblastoma: a new prognostic factor?

    Get PDF
    BACKGROUND: For recurrent glioblastoma (GB) patients, several therapy options have been established over the last years such as more aggressive surgery, re-irradiation or chemotherapy. Age and the Karnofsky Performance Status Scale (KPSS) are used to make decisions for these patients as these are established as prognostic factors in the initial diagnosis of GB. This study’s aim was to evaluate preoperative patient comorbidities by using the age-adjusted Charlson Comorbidity Index (ACCI) as a prognostic factor for recurrent GB patients. METHODS: In this retrospective analysis we could include 123 patients with surgery for primary recurrence of GB from January 2007 until December 2016 (43 females, 80 males, mean age 57 years (range 21–80 years)). Preoperative age, sex, ACCI, KPSS and adjuvant treatment regimes were recorded for each patient. Extent of resection (EOR) was recorded as a complete/incomplete resection of the contrast-enhancing tumor part. RESULTS: Median overall survival (OS) was 9.0 months (95% CI 7.1–10.9 months) after first re-resection. Preoperative KPSS > 80% (P < 0.001) and EOR (P = 0.013) were associated with significantly improved survival in univariate analysis. Including these factors in multivariate analysis, preoperative KPSS < 80 (HR 2.002 [95% CI: 1.246–3.216], P = 0.004) and EOR are the only significant prognostic factor (HR 1.611 [95% CI: 1.036–2.505], P = 0.034). ACCI was not shown as a prognostic factor in univariate and multivariate analyses. CONCLUSION: For patients with surgery for recurrent glioblastoma, the ACCI does not add further information about patient’s prognosis besides the well-established KPSS and extent of resection

    Prognostic value of tumour volume in patients with a poor Karnofsky performance status scale – a bicentric retrospective study

    Get PDF
    Backround: Median overall survival (OS) after diagnosis of glioblastoma (GBM) remains 15 months amongst patients receiving aggressive surgical resection, chemotherapy and irradiation. Treatment of patients with a poor preoperative Karnofsky Performance Status Scale (KPSS) is still controversial. Therefore, we retrospectively assessed the outcome after surgical treatment in patients with a KPSS of ≤60%. Methods: We retrospectively included patients with a de-novo glioblastoma WHO °IV and preoperative KPSS ≤60%, who underwent surgery at two neurosurgical centres between September 2006 and March 2016. We recorded pre- and postoperative tumour volume, pre- and postoperative KPSS, OS, age and MGMT promoter status. Results: One hundred twenty-three patients (58 females/65 males, mean age 67.4 ± 13.4 years) met the inclusion criteria. Seventy-five of the 123 patients (61%) underwent surgical resection. 48/123 patients (39%) received a biopsy. The median preoperative and postoperative tumour volume of all patients was 33.0 ± 31.3 cm3 (IR 15.0–56.5cm3) and 3.1 ± 23.8 cm3 (IR 0.2–15.0 cm3), respectively. The median KPSS was 60% (range 20–60%) preoperatively and 50% (range 0–80%) postoperatively. Patients who received a biopsy showed a median OS for patients who received a biopsy only was 3.0 months (95% CI 2.0–4.0 months), compared to patients who had a resection and had a median OS of 8 months (95% CI 3.1–12.9 months). Age (p &lt; 0.001, HR: 1.045 [95% CI 1.022–1.068]), postoperative tumour volume (p = 0.02, HR: 1.016 [95% CI 1.002–1.029]) and MGMT promotor status (p = 0.016, HR: 0.473 [95% CI 0.257–0.871]) were statistically significant in multivariate analysis. In subgroup analyses only age was shown as a significant prognostic factor in multivariate analyses for patients receiving surgery (p &lt; 0.001, HR: 1.046 [95% CI 1.022–1.072]). In the biopsy group no significant prognostic factors were shown in multivariate analysis. Conclusion: GBM patients with a preoperative KPSS of ≤60% might profit from surgical reduction of tumour burden
    corecore