11 research outputs found
Harmonic Content of Strain-induced Potential Modulation in Unidirectional Lateral Superlattices
Detailed analysis of the commensurability oscillation (CO) has been performed
on unidirectional lateral superlattices with periods ranging from a=92 to 184
nm. Fourier analysis reveals the second (and the third) harmonics along with
the fundamental oscillation for a>=138 nm (184 nm) at low-enough temperature,
evincing the presence of corresponding harmonics in the profile of the
potential modulation. The harmonics manifest themselves in CO with demagnified
amplitude due to the low-pass filtering action of the thermal damping factor;
with a suitable consideration of the damping effect, the harmonics of the
modulation potential are found to have the amplitudes V_2 and V_3 up to roughly
30% of that of the fundamental component V_1, despite the small ratio of the
period a to the depth d = 99 nm of the two-dimensional electron gas (2DEG) from
the surface. The dependence of V_n on a indicates that the fundamental
component originates at the surface, while the higher harmonics arise from the
effect of the strain that penetrates down into subsurface. The manipulation of
high harmonics thus provides a useful technique to introduce small length-scale
modulation into high-mobility 2DEGs located deep inside the wafer.Comment: 9 pages, 5 figure
Flat-band ferromagnetism in quantum dot superlattices
Possibility of flat-band ferromagnetism in quantum dot arrays is
theoretically discussed. By using a quantum dot as a building block, quantum
dot superlattices are possible. We consider dot arrays on Lieb and kagome
lattices known to exhibit flat band ferromagnetism. By performing an exact
diagonalization of the Hubbard Hamiltonian, we calculate the energy difference
between the ferromagnetic ground state and the paramagnetic excited state, and
discuss the stability of the ferromagnetism against the second nearest neighbor
transfer. We calculate the dot-size dependence of the energy difference in a
dot model and estimate the transition temperature of the
ferromagnetic-paramagnetic transition which is found to be accessible within
the present fabrication technology. We point out advantages of semiconductor
ferromagnets and suggest other interesting possibilities of electronic
properties in quantum dot superlattices.Comment: 15 pages, 7 figures (low resolution). High-resolution figures are
available at
http://www.brl.ntt.co.jp/people/tamura/Research/PublicationPapers.htm
In situ x-ray diffraction study of epitaxial growth of ordered Fe3Si films
Molecular beam epitaxy of Fe3Si on GaAs(001) is studied in situ by grazing
incidence x-ray diffraction. Layer-by-layer growth of Fe3Si films is observed
at a low growth rate and substrate temperatures near 200 degrees Celsius. A
damping of x-ray intensity oscillations due to a gradual surface roughening
during growth is found. The corresponding sequence of coverages of the
different terrace levels is obtained. The after-deposition surface recovery is
very slow. Annealing at 310 degrees Celsius combined with the deposition of one
monolayer of Fe3Si restores the surface to high perfection and minimal
roughness. Our stoichiometric films possess long-range order and a high quality
heteroepitaxial interface.Comment: 8 pages, 3 figure
Free GaAs surfaces studied using a back-gated undoped GaAs/AlâGaâââAs heterostructure
International audienceWe study the free GaAs surface by using a back-gated undoped GaAs/AlâGaâââAs heterostructure. This structure is suitable in investigating the free GaAs surface since a two-dimensional electron gas is induced by the back-gate bias in the undoped heterostructure. We compare the channel depth dependence of the transport characteristics with two different models of the free GaAs. The ''midgap pinning model'' assumes a constant surface Fermi level and an alternative approach called the ''frozen surface model'' assumes a constant surface charge density. The experimental results indicate that the frozen surface model appropriately describes free GaAs surfaces at low temperatures although the midgap pinning model is widely accepted. This is because charges cannot be transferred to the free GaAs surface at low temperatures