72 research outputs found

    Glutathione Restores the Mechanism of Synaptic Plasticity in Aged Mice to That of the Adult

    Get PDF
    Glutathione (GSH), the major endogenous antioxidant produced by cells, can modulate the activity of N-methyl-D-aspartate receptors (NMDARs) through its reducing functions. During aging, an increase in oxidative stress leads to decreased levels of GSH in the brain. Concurrently, aging is characterized by calcium dysregulation, thought to underlie impairments in hippocampal NMDAR-dependent long-term potentiation (LTP), a form of synaptic plasticity thought to represent a cellular model for memory

    Selective Cholinergic Depletion in Medial Septum Leads to Impaired Long Term Potentiation and Glutamatergic Synaptic Currents in the Hippocampus

    Get PDF
    Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning

    Scopolamine Administration Modulates Muscarinic, Nicotinic and NMDA Receptor Systems

    Get PDF
    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration

    ATM and ataxia telangiectasia

    No full text
    Second in Molecular Medicine Review Serie
    • …
    corecore