44 research outputs found
Volatile and Non-Volatile Single Electron Memory
Multi Tunnel Junctions (MTJs) have attracted much attention recently in the fields of Single-Electron Devices (SED) in particular Single-Electron Memory (SEM). In this paper, we have design and study a nano-device structure using a two dimensional array MTJs for Volatile and Non-Volatile-SEM, in order to analyze the impact of physical parameters on the performances. We investigate the single-electron circuit characteristics in our devices qualitatively, using single-electron Monte Carlo simulator SIMON.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3192
The impact of fire on habitat use by the short-snouted elephant shrew ('Elephantulus brachyrhynchus') in North West Province, South Africa
Several studies have investigated the response of small mammal populations to fire, but few have investigated behavioural responses to habitat modification. In this study we investigated the impact of fire on home range, habitat use and activity patterns of the short-snouted elephant shrew (Elephantulus brachyrhynchus) by radio-tracking individuals before and after a fire event. All animals survived the passage of fire in termite mound refugia. Before the fire, grassland was used more than thickets, but habitat utilization shifted to thickets after fire had removed the grass cover. Thickets were an important refuge both pre- and post-fire, but the proportion of thicket within the home range was greater post-fire. We conclude that fire-induced habitat modification resulted in a restriction of E. brachyrhynchus movements to patches of unburned vegetation. This may be a behavioural response to an increase in predation pressure associated with a reduction in cover, rather than a lack of food. This study highlights the importance of considering the landscape mosaic in fire management and allowing sufficient island patches to remain post-fire ensures the persistence of the small mammal fauna
Where are you from, stranger? The enigmatic biogeography of North African pond turtles (Emys orbicularis) .
Abstract The European pond turtle (Emys orbicularis) is a
Nearctic element in the African fauna and thought to have
invaded North Africa from the Iberian Peninsula. All North
African populations are currently identified with the subspecies
E. o. occidentalis. However, a nearly range-wide sampling in
North Africa used for analyses of mitochondrial and microsatellite
DNA provides evidence that only Moroccan populations
belong to this taxon, while eastern Algerian and Tunisian pond
turtles represent an undescribed distinct subspecies. These two
taxa are most closely related to E. o. galloitalica with a native
distribution along the Mediterranean coast of northern Spain
through southern France to western and southern Italy. This
group is sister to a clade comprising several mitochondrial lineages
and subspecies of E. orbicularis from Central and Eastern
Europe plus Asia, and the successive sisters are E. o. hellenica
and E. trinacris. Our results suggest that E. orbicularis has been
present in North Africa longer than on the Iberian Peninsula and
that after an initial invasion of North Africa by pond turtles from
an unknown European source region, there was a phase of
diversification in North Africa, followed by a later re-invasion
of Europe by one of the African lineages. The differentiation of
pond turtles in North Africa parallels a general phylogeographic
paradigm in amphibians and reptiles, with deeply divergent
lineages in the western and eastern Maghreb. Acknowledging
their genetic similarity, we propose to synonymize the previously
recognized Iberian subspecies E. o. fritzjuergenobsti with E. o.
occidentalis sensu stricto. The seriously imperiled Moroccan
populations of E. o. occidentalis represent two Management
Units different in mitochondrial haplotypes and microsatellite
markers. The conservation status of eastern Algerian pond turtles
is unclear, while Tunisian populations are endangered.
Considering that Algerian and Tunisian pond turtles represent
an endemic taxon, their situation throughout the historical range
should be surveyed to establish a basis for conservation
measures
Interface traps effect on the charge transport mechanisms in metal oxide semiconductor structures based on silicon nanocrystals
International audienceThe transport phenomena in Metal-Oxide-Semiconductor (MOS) structures having silicon nanocrystals (Si-NCs) inside the dielectric layer has been investigated by high frequency Capacitance-Voltage (C-V) method and the Deep-Level Transient Spectroscopy (DLTS). For the reference samples without Si-NCs, we observe a slow electron trap for a large temperature range, which is probably a response of a series electron traps having a very close energy levels. A clear series of electron traps are evidenced in DLTS spectrum for MOS samples with Si-NCs. Their activation energies are comprised between 0.28 eV and 0.45 eV. Moreover, we observe in this DLTS spectrum, a single peak that appears at low temperature which we attributed to Si-NCs response. In MOS structure without Si-NCs, the conduction mechanism is dominated by the thermionic fast emission/capture of charge carriers from the highly doped polysilicon layer to Si-substrate through interface trap-states. However, at low temperature, the tunneling of charge carriers from highly Poly-Si to Si-substrate trough the trapping/detrapping mechanism in the Si-NCs contributed to the conduction mechanism for MOS with Si-NCs. These results are helpful to understand the principle of charge transport of MOS structures having a Si-NCs in the SiOx = 1.5 oxide matrix
Study of photogenerated traps in nanopixels by random telegraph signal and low frequency noise
In this work, we present noise analysis in a Single Electron Photo-detector (photo-SET or nanopixel) able to detect one by one electron. We perform the power spectral densities (PSD) of random telegraph signals (RTSs) measured in the dark conditions and under light illumination. Photoinduced RTS can be attributed to the charging of a dot near the current path. From these results, photogenerated traps were identified. It is also found that RTS fluctuations depend on the light wavelength
Concept of new photodetector based on single electron transistor for single charge detection
In this paper, we present a model proposition of photo-SET (single electron photo-detector) aiming at detecting one by one electrons. In the first part of this work, we present
the two blocs of the proposed photo-SET (reading and detection blocs). The device structure presented
is consisting of two SETs capacitively coupled. In this model, the first SET
(SET1) is supposed to read the charge whereas the detection bloc is
represented by the second SET (SET2). In the second part, we
investigate the effects of photoexcitation on Id-Vg curves and we
present results obtained on the output photo-SET characteristics after
variation of power illumination and response time
Multiple tunnel junctions based nanowire photodetector model for single charge detection
In this paper we propose a new silicon nanowire photodetector model based on a single-electron transistor for single charge detection (photo-NWSET). In the first part of this work we present the two blocks of the device structure (reading and detection blocks). The presented model is consisting of two blocks capacitively coupled. The first SET (SET1) is supposed to read the charge whereas the detection block is represented by the nanowire (NW) system associated to an optical source. We modeled the NW by a series of seven islands separated by eight tunnel junctions (8TJs). In the second part of this work, we investigate the effects of photoexcitation on Id-Vg curves and we present results obtained on the output (photo-NWSET) characteristics after variation of power illumination and response time
Characterization of deep level defects in thermally annealed Fe‐doped semi‐insulating InP by photoinduced current transient spectroscopy
International audienc
Hydrocalumite Thin Films for Polyphenol Biosensor Elaboration
—Hybrid thin films based on Hydrocalu-mite (Ca 2 AlCl layered double hydroxide LDH) and tyrosinaseenzyme have been used for the elaboration of a high sensitive amperometric biosensor detecting polyphenols extracted from green tea. Structural properties of LDH nanomaterials were characterized by X-ray powder diffraction and Infra-Red spectroscopy, confirming its crystalline phase and chemical composition. Ca 2 AlCl-LDHs-thin films were deposited by spin-coating, and studied by atomic force microscopy to obtain information about the surface morphology of this host matrix before and after enzyme's immobilization. Electrochemical study using cyclic voltammetry and chronoamperometry shows good performances of the built-in biosensor with a high sensitivity for polyphenols concentrations ranging from 24 pM to 2.4 µM and a limit of detection of 1.2 pM. Index Terms—Amperometric biosensor, layered double hydroxide, tyrosinase, hybrid nanomaterial, atomic force microscopy