2 research outputs found
Statistical properties of contact vectors
We study the statistical properties of contact vectors, a construct to
characterize a protein's structure. The contact vector of an N-residue protein
is a list of N integers n_i, representing the number of residues in contact
with residue i. We study analytically (at mean-field level) and numerically the
amount of structural information contained in a contact vector. Analytical
calculations reveal that a large variance in the contact numbers reduces the
degeneracy of the mapping between contact vectors and structures. Exact
enumeration for lengths up to N=16 on the three dimensional cubic lattice
indicates that the growth rate of number of contact vectors as a function of N
is only 3% less than that for contact maps. In particular, for compact
structures we present numerical evidence that, practically, each contact vector
corresponds to only a handful of structures. We discuss how this information
can be used for better structure prediction.Comment: 20 pages, 6 figure