1,346 research outputs found

    Single grain (LRE)-Ba-Cu-O superconductors fabricated by top seeded melt growth in air

    Get PDF
    We have recently reported a practical processing method for the fabrication in air of large, single grain (LRE)-Ba-Cu-O [where LRE Nd, Sm, Eu and Gd] bulk superconductors that exhibit high Tc and high Jc. The process is based initially on the development of a new type of generic seed crystal that can promote effectively the epitaxial nucleation of any (RE)-Ba-Cu-O system and, secondly, by suppressing the formation of (LRE)/Ba solid solution in a controlled manner within large LRE-Ba-Cu-O grains processed in air. In this paper we investigate the degree of homogeneity of large grain Sm-Ba-Cu-O superconductors fabricated by this novel process. The technique offers a significant degree of freedom in terms of processing parameters and reproducibility in the growth of oriented single grains in air and yields bulk samples with significantly improved superconducting and field-trapping properties compared to those processed by conventional top seeded melt growth (TSMG)

    Anomalous Transport through the p-Wave Superconducting Channel in the 3-K Phase of Sr2RuO4

    Full text link
    Using micro fabrication techniques, we extracted individual channels of 3-Kelvin (3-K) phase superconductivity in Sr2RuO4-Ru eutectic systems and confirmed odd-parity superconductivity in the 3-K phase, similar to pure Sr2RuO4. Unusual hysteresis in the differential resistance-current and voltage-current characteristics observed below 2 K indicates the internal degrees of freedom of the superconducting state. A possible origin of the hysteresis is current-induced chiral-domain-wall motion due to the chiral p-wave state.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let

    Brownian molecular motors driven by rotation-translation coupling

    Full text link
    We investigated three models of Brownian motors which convert rotational diffusion into directed translational motion by switching on and off a potential. In the first model a spatially asymmetric potential generates directed translational motion by rectifying rotational diffusion. It behaves much like a conventional flashing ratchet. The second model utilizes both rotational diffusion and drift to generate translational motion without spatial asymmetry in the potential. This second model can be driven by a combination of a Brownian motor mechanism (diffusion driven) or by powerstroke (drift driven) depending on the chosen parameters. In the third model, elements of both the Brownian motor and powerstroke mechanisms are combined by switching between three distinct states. Relevance of the model to biological motor proteins is discussed.Comment: 11 pages, 8 figure

    Effect of La Doping on Microstructure and Critical Current Density of MgB2

    Full text link
    In the present study, La-doped MgB_2 superconductors with different doping level (Mg1-xLaxB2; x=0.00, 0.01, 0.03 & 0.05) have been synthesized by solid-state reaction route at ambient pressure. Effect of La doping have been investigated in relation to microstructural characteristics and superconducting properties, particularly intragrain critical current density (Jc). The microstructural characteristics of the as synthesized Mg(La)B2 compounds were studied employing transmission electron microscopic (TEM) technique. The TEM investigations reveal inclusion of LaB6 nanoparticles within the MgB2 grains which provide effective flux pinning centres. The evaluation of intragrain Jc through magnetic measurements on the fine powdered version of the as synthesized samples reveal that Jc of the samples change significantly with the doping level. The optimum result on Jc is obtained for Mg0.97La0.03B2 at 5K, the Jc reaches ~1.4x107A/cm2 in self field, ~2.1 x 106A/cm2 at 1T, ~2.5 x 105A/cm2 at 2.5T and ~1.8 x 104 A/cm2 at 4.5T. The highest value of intragrain Jc in Mg0.97La0.03B2 superconductor has been attributed to the inclusion of LaB6 nanoparticles which are capable of providing effective flux pinning centres

    High transport critical current density obtained for Powder-In-Tube-processed MgB2 tapes and wires using stainless steel and Cu-Ni tubes

    Full text link
    MgB2 tapes and wires were fabricated by the Powder-In-Tube method. Stainless steel and Cu-Ni tubes were used as sheath materials, and no heat treatment was applied. The tapes made of stainless steel showed transport critical current density Jc of about 10,000A/cm2 at 4.2K and 5T. A high Jc of about 300,000A/cm2 was obtained by extrapolating the Jc-B curves to zero field. Multifilamentary(7-core) MgB2 wire was successfully fabricated using Cu-Ni tubes. For both tapes and wires the grain connectivity of MgB2 was as good as a high-pressure sintered bulk sample. However, the Jc of the Cu-Ni sheathed wire was lower than the stainless steel sheathed tape due to the lower packing density of MgB2.Comment: 4 pages, 3 figure

    Superconducting thin films of MgB2 on (001)-Si by pulsed laser deposition

    Full text link
    Superconducting thin films have been prepared on Si-substrates, using pulsed laser deposition from a target composed of a mixture of Mg and MgB2 powders. The films were deposited at room temperature and post-annealed at 600 degrees C. The zero resistance transition temperatures were 12 K, with an onset transition temperature of 27 K. Special care has been taken to avoid oxidation of Mg in the laser plasma and deposited film, by optimizing the background pressure of Ar gas in the deposition chamber. For this the optical emission in the visible range from the plasma has been used as indicator. Preventing Mg from oxidation was found to be essential to obtain superconducting films

    Current percolation and anisotropy in polycrystalline MgB2_2

    Full text link
    The influence of anisotropy on the transport current in MgB2_2 polycrystalline bulk samples and wires is discussed. A model for the critical current density is proposed, which is based on anisotropic London theory, grain boundary pinning and percolation theory. The calculated currents agree convincingly with experimental data and the fit parameters, especially the anisotropy, obtained from percolation theory agree with experiment or theoretical predictions.Comment: 5 pages, accepted for publication in Physical Review Letters (http://prl.aps.org/

    Microstructure and superconducting properties of hot isostatically pressed MgB2

    Full text link
    Bulk samples of MgB2 have been formed by hot isostatic pressing (HIPping) of commercial powder at 100MPa and 950=B0C. The resulting material is 100% dense with a sharp superconducting transition at 37.5K. Microstructural studies have indicated the presence of small amounts of second phases within the material, namely MgO and B rich compositions, probably MgB4. Magnetisation measurements performed at 20K have revealed values of Jc=1.3 x 106A/cm2 at zero field, and 9.3 x 105A/cm2 at 1T. Magneto optical (MO) studies have shown direct evidence for the superconducting homogeneity and strong intergranular current flow in the material.Comment: 3 pages, 6 figures, text updated, new references included and discussed. Submitted to Superconductor Science and Technolog

    Evidence for high inter-granular current flow in single-phase polycrystalline MgB2 superconductor

    Full text link
    The distribution of magnetic field in single-phase polycrystalline bulk MgB2 has been measured using a Magneto-Optical (MO) technique for an external magnetic field applied perpendicular to the sample surface. The MO studies indicate that an inter-granular current network is readily established in this material and the current is not limited by weak-linked grain boundaries. The grain boundaries are observed to resist preferential magnetic field penetration, with the inter-grain mechanism dominating the current flow in the sample at temperatures up to 30K. The results provide clear evidence that the intra-granular current flow is isotropic. A critical current density of ~10^4 Acm-2 was estimated at 30K in a field of 150mT from the MO measurements. These results provide further evidence of the considerable potential for MgB2 for engineering applications.Comment: 3 pages, 3 figure

    Fabrication and transport critical currents of multifilamentary MgB2/Fe wires and tapes

    Full text link
    Multifilamentary MgB2/Fe wires and tapes with high transport critical current densities have been fabricated using a straightforward powder-in-tube (PIT) process. After annealing, we measured transport jc values up to 1.1 * 105 A/cm2 at 4.2 K and in a field of 2 T in a MgB2/Fe square wire with 7 filaments fabricated by two-axial rolling, and up to 5 * 104 A/cm2 at 4.2 K in 1 T in a MgB2/Fe tape with 7 filaments. For higher currents these multifilamentary wires and tapes quenched due to insufficient thermal stability of filaments. Both the processing routes and deformation methods were found to be important factors for fabricating multifilamentary MgB2 wires and tapes with high transport jc values.Comment: 13 pages, 7 figure
    corecore