369,988 research outputs found

    Negative Refraction and Subwavelength Lensing in a Polaritonic Crystal

    Full text link
    We show that a two-dimensional polaritonic crystal, made of metallic rods that support well defined plasmon oscillations, can act in a narrow frequency range as a medium in which a negative refraction and subwavelength lensing can occur. We show that surface modes are excited on the surface of the lens, and that they facilitate restoration of the evanescent waves, which carry the subwavelength image information. We demonstrate that this can occur in the visible frequency range, for a wide range of materials, including silver and aluminum rods, and carbon nanotubes. This flexibility should allow for an experimental demonstration of this phenomenon in the visible frequency range.Comment: 14 pages; 4 figure

    Autonomous Locomotion Mode Transition Simulation of a Track-legged Quadruped Robot Step Negotiation

    Full text link
    Multi-modal locomotion (e.g. terrestrial, aerial, and aquatic) is gaining increasing interest in robotics research as it improves the robots environmental adaptability, locomotion versatility, and operational flexibility. Within the terrestrial multiple locomotion robots, the advantage of hybrid robots stems from their multiple (two or more) locomotion modes, among which robots can select from depending on the encountering terrain conditions. However, there are many challenges in improving the autonomy of the locomotion mode transition between their multiple locomotion modes. This work proposed a method to realize an autonomous locomotion mode transition of a track-legged quadruped robot steps negotiation. The autonomy of the decision-making process was realized by the proposed criterion to comparing energy performances of the rolling and walking locomotion modes. Two climbing gaits were proposed to achieve smooth steps negotiation behaviours for energy evaluation purposes. Simulations showed autonomous locomotion mode transitions were realized for negotiations of steps with different height. The proposed method is generic enough to be utilized to other hybrid robots after some pre-studies of their locomotion energy performances

    Figure of Merit for Dark Energy Constraints from Current Observational Data

    Full text link
    Choosing the appropriate figure of merit (FoM) for dark energy (DE) constraints is key in comparing different DE experiments. Here we show that for a set of DE parameters {f_i}, it is most intuitive to define FoM = 1/\sqrt{Cov(f1,f2,f3,...)}, where Cov(f1,f2,f3,...) is the covariance matrix of {f_i}. The {f_i} should be minimally correlated. We demonstrate two useful choices of {f_i} using 182 SNe Ia (compiled by Riess et al. 2007), [R(z_*), l_a(z_*), \Omega_b h^2] from the five year Wilkinson Microwave Anisotropy Probe (WMAP) observations, and SDSS measurement of the baryon acoustic oscillation (BAO) scale, assuming the HST prior of H_0=72+/-8 km/s Mpc^{-1} and without assuming spatial flatness. We find that the correlation of (w_0,w_{0.5}) [w_0=w_X(z=0), w_{0.5}=w_X(z=0.5), w_X(a) = 3w_{0.5}-2w_0+3(w_0-w_{0.5})a] is significantly smaller than that of (w_0,w_a) [w_X(a)=w_0+(1-a)w_a]. In order to obtain model-independent constraints on DE, we parametrize the DE density function X(z)=\rho_X(z)/\rho_X(0) as a free function with X_{0.5}, X_{1.0}, and X_{1.5} [values of X(z) at z=0.5, 1.0, and 1.5] as free parameters estimated from data. If one assumes a linear DE equation of state, current data are consistent with a cosmological constant at 68% C.L. If one assumes X(z) to be a free function parametrized by (X_{0.5}, X_{1.0}, X_{1.5}), current data deviate from a cosmological constant at z=1 at 68% C.L., but are consistent with a cosmological constant at 95% C.L.. Future DE experiments will allow us to dramatically increase the FoM of constraints on (w_0,w_{0.5}) and of (X_{0.5}, X_{1.0}, X_{1.5}). This will significantly shrink the DE parameter space to enable the discovery of DE evolution, or the conclusive evidence for a cosmological constant.Comment: 7 pages, 3 color figures. Submitte

    Localization and band-gap pinning in semiconductor superlattices with layer-thickness fluctuations

    Full text link
    We consider (AlAs)_n/(GaAs)_n superlattices with random thickness fluctuations Delta-n around the nominal period n. Using three-dimensional pseudopotential plane-wave band theory, we show that (i) any amount Delta-n/n of thickness fluctuations leads to band-edge wavefunction localization, (ii) for small Delta-n/n the SL band gap is pinned at the gap level produced by a single layer with ``wrong'' thickness n + Delta-n, (iii) the bound states due to monolayer thickness fluctuations lead to significant band-gap reductions, (iv) AlAs/GaAs SL's with monolayer thickness fluctuations have a direct band gap, while the ideal SL's are indirect for n<4.Comment: 10 pages, Revtex. 3 figures available at http://www.cecam.fr/~mader/elstruc.html . Published in Europhys. Lett. 31, 107 (95

    Spin and Orbital Splitting in Ferromagnetic Contacted Single Wall Carbon Nanotube Devices

    Full text link
    We observed the coulomb blockade phenomena in ferromagnetic contacting single wall semiconducting carbon nanotube devices. No obvious Coulomb peaks shift was observed with existing only the Zeeman splitting at 4K. Combining with other effects, the ferromagnetic leads prevent the orbital spin states splitting with magnetic field up to 2 Tesla at 4K. With increasing magnetic field further, both positive or negative coulomb peaks shift slopes are observed associating with clockwise and anticlockwise orbital state splitting. The strongly suppressed/enhanced of the conductance has been observed associating with the magnetic field induced orbital states splitting/converging

    Control of Coercivities in (Ga,Mn)As Thin Films by Small Concentrations of MnAs Nanoclusters

    Full text link
    We demonstrate that low concentrations of a secondary magnetic phase in (Ga,Mn)As thin films can enhance the coercivity by factors up to ~100 without significantly degrading the Curie temperature or saturation magnetisation. Magnetic measurements indicate that the secondary phase consists of MnAs nanoclusters, of average size ~7nm. This approach to controlling the coercivity while maintaining high Curie temperature, may be important for realizing ferromagnetic semiconductor based devices.Comment: 8 pages,4 figures. accepted for publication in Appl. Phys. Let
    corecore