790 research outputs found

    Comment on ``Quantum Phase Transition of the Randomly Diluted Heisenberg Antiferromagnet on a Square Lattice''

    Full text link
    In Phys. Rev. Lett. 84, 4204 (2000) (cond-mat/9905379), Kato et al. presented quantum Monte Carlo results indicating that the critical concentration of random non-magnetic sites in the two-dimensional antiferromagnetic Heisenberg model equals the classical percolation density; pc=0.407254. The data also suggested a surprising dependence of the critical exponents on the spin S of the magnetic sites, with a gradual approach to the classical percolation exponents as S goes to infinity. I here argue that the exponents in fact are S-independent and equal to those of classical percolation. The apparent S-dependent behavior found by Kato et al. is due to temperature effects in the simulations as well as a quantum effect that masks the true asymptotic scaling behavior for small lattices.Comment: Comment on Phys. Rev. Lett. 84, 4204 (2000), by K. Kato et al.; 1 page, 1 figur

    Spin nematic ground state of the triangular lattice S=1 biquadratic model

    Full text link
    Motivated by the spate of recent experimental and theoretical interest in Mott insulating S=1 triangular lattice magnets, we consider a model S=1 Hamiltonian on a triangular lattice interacting with rotationally symmetric biquadratic interactions. We show that the partition function of this model can be expressed in terms of configurations of three colors of tightly-packed, closed loops with {\em non-negative} weights, which allows for efficient quantum Monte Carlo sampling on large lattices. We find the ground state has spin nematic order, i.e. it spontaneously breaks spin rotation symmetry but preserves time reversal symmetry. We present accurate results for the parameters of the low energy field theory, as well as finite-temperature thermodynamic functions

    Monte Carlo Simulations of Quantum Spin Systems in the Valence Bond Basis

    Full text link
    We discuss a projector Monte Carlo method for quantum spin models formulated in the valence bond basis, using the S=1/2 Heisenberg antiferromagnet as an example. Its singlet ground state can be projected out of an arbitrary basis state as the trial state, but a more rapid convergence can be obtained using a good variational state. As an alternative to first carrying out a time consuming variational Monte Carlo calculation, we show that a very good trial state can be generated in an iterative fashion in the course of the simulation itself. We also show how the properties of the valence bond basis enable calculations of quantities that are difficult to obtain with the standard basis of Sz eigenstates. In particular, we discuss quantities involving finite-momentum states in the triplet sector, such as the dispersion relation and the spectral weight of the lowest triplet.Comment: 15 pages, 7 figures, for the proceedings of "Computer Simulation Studies in Condensed Matter Physics XX

    Comment on "Evidence for nontrivial ground-state structure of 3d +/- J spin glasses"

    Full text link
    In a recent Letter [Europhys. Lett. 40, 429 (1997)], Hartmann presented results for the structure of the degenerate ground states of the three-dimensional +/- J spin glass model obtained using a genetic algorithm. In this Comment, I argue that the method does not produce the correct thermodynamic distribution of ground states and therefore gives erroneous results for the overlap distribution. I present results of simulated annealing calculations using different annealing rates for cubic lattices with N=4*4*4spins. The disorder-averaged overlap distribution exhibits a significant dependence on the annealing rate, even when the energy has converged. For fast annealing, moments of the distribution are similar to those presented by Hartmann. However, as the annealing rate is lowered, they approach the results previously obtained using a multi-canonical Monte Carlo method. This shows explicitly that care must be taken not only to reach states with the lowest energy but also to ensure that they obey the correct thermodynamic distribution, i.e., that the probability is the same for reaching any of the ground states.Comment: 2 pages, Revtex, 1 PostScript figur

    Stochastic Cluster Series expansion for quantum spin systems

    Full text link
    In this paper we develop a cluster-variant of the Stochastic Series expansion method (SCSE). For certain systems with longer-range interactions the SCSE is considerably more efficient than the standard implementation of the Stochastic Series Expansion (SSE), at low temperatures. As an application of this method we calculated the T=0-conductance for a linear chain with a (diagonal) next nearest neighbor interaction.Comment: 5 pages, 7 figure

    Spin dynamics of SrCu2_2O3_3 and the Heisenberg ladder

    Full text link
    The S=1/2S=1/2 Heisenberg antiferromagnet in the ladder geometry is studied as a model for the spin degrees of freedom of SrCu2_2O3_3. The susceptibility and the spin echo decay rate are calculated using a quantum Monte Carlo technique, and the spin-lattice relaxation rate is obtained by maximum entropy analytic continuation of imaginary time correlation functions. All calculated quantities are in reasonable agreement with experimental results for SrCu2_2O3_3 if the exchange coupling J≈850J \approx 850K, i.e. significantly smaller than in high-Tc_c cuprates.Comment: 11 pages (Revtex) + 3 uuencoded ps files. To appear in Phys. Rev. B, Rapid Com

    Order-Disorder Transition in a Two-Layer Quantum Antiferromagnet

    Full text link
    We have studied the antiferromagnetic order -- disorder transition occurring at T=0T=0 in a 2-layer quantum Heisenberg antiferromagnet as the inter-plane coupling is increased. Quantum Monte Carlo results for the staggered structure factor in combination with finite-size scaling theory give the critical ratio Jc=2.51±0.02J_c = 2.51 \pm 0.02 between the inter-plane and in-plane coupling constants. The critical behavior is consistent with the 3D classical Heisenberg universality class. Results for the uniform magnetic susceptibility and the correlation length at finite temperature are compared with recent predictions for the 2+1-dimensional nonlinear σ\sigma-model. The susceptibility is found to exhibit quantum critical behavior at temperatures significantly higher than the correlation length.Comment: 11 pages (5 postscript figures available upon request), Revtex 3.

    Susceptibility of the 2D S=1/2 Heisenberg antiferromagnet with an impurity

    Full text link
    We use a quantum Monte Carlo method (stochastic series expansion) to study the effects of a magnetic or nonmagnetic impurity on the magnetic susceptibility of the two-dimensional Heisenberg antiferromagnet. At low temperatures, we find a log-divergent contribution to the transverse susceptibility. We also introduce an effective few-spin model that can quantitatively capture the differences between magnetic and nonmagnetic impurities at high and intermediate temperatures.Comment: 5 pages, 4 figures, v2: Updated data in figures, minor changes in text, v3: Final version, cosmetic change

    Critical temperature and the transition from quantum to classical order parameter fluctuations in the three-dimensional Heisenberg antiferromagnet

    Full text link
    We present results of extensive quantum Monte Carlo simulations of the three-dimensional (3D) S=1/2 Heisenberg antiferromagnet. Finite-size scaling of the spin stiffness and the sublattice magnetization gives the critical temperature Tc/J = 0.946 +/- 0.001. The critical behavior is consistent with the classical 3D Heisenberg universality class, as expected. We discuss the general nature of the transition from quantum mechanical to classical (thermal) order parameter fluctuations at a continuous Tc > 0 phase transition.Comment: 5 pages, Revtex, 4 PostScript figures include
    • …
    corecore