62,911 research outputs found
Simultaneous Multiple Surface Segmentation Using Deep Learning
The task of automatically segmenting 3-D surfaces representing boundaries of
objects is important for quantitative analysis of volumetric images, and plays
a vital role in biomedical image analysis. Recently, graph-based methods with a
global optimization property have been developed and optimized for various
medical imaging applications. Despite their widespread use, these require human
experts to design transformations, image features, surface smoothness priors,
and re-design for a different tissue, organ or imaging modality. Here, we
propose a Deep Learning based approach for segmentation of the surfaces in
volumetric medical images, by learning the essential features and
transformations from training data, without any human expert intervention. We
employ a regional approach to learn the local surface profiles. The proposed
approach was evaluated on simultaneous intraretinal layer segmentation of
optical coherence tomography (OCT) images of normal retinas and retinas
affected by age related macular degeneration (AMD). The proposed approach was
validated on 40 retina OCT volumes including 20 normal and 20 AMD subjects. The
experiments showed statistically significant improvement in accuracy for our
approach compared to state-of-the-art graph based optimal surface segmentation
with convex priors (G-OSC). A single Convolution Neural Network (CNN) was used
to learn the surfaces for both normal and diseased images. The mean unsigned
surface positioning errors obtained by G-OSC method 2.31 voxels (95% CI
2.02-2.60 voxels) was improved to voxels (95% CI 1.14-1.40 voxels) using
our new approach. On average, our approach takes 94.34 s, requiring 95.35 MB
memory, which is much faster than the 2837.46 s and 6.87 GB memory required by
the G-OSC method on the same computer system.Comment: 8 page
Gravitational Wave Background from Phantom Superinflation
Recently, the early superinflation driven by phantom field has been proposed
and studied. The detection of primordial gravitational wave is an important
means to know the state of very early universe. In this brief report we discuss
in detail the gravitational wave background excited during the phantom
superinflation.Comment: 3 pages, 2 eps figures, to be published in PRD, revised with
published version, refs. adde
Effect of the attachment of ferromagnetic contacts on the conductivity and giant magnetoresistance of graphene nanoribbons
Carbon-based nanostructures and graphene, in particular, evoke a lot of
interest as new promising materials for nanoelectronics and spintronics. One of
the most important issue in this context is the impact of external electrodes
on electronic properties of graphene nanoribbons (GNR). The present theoretical
method is based on the tight-binding model and a modified recursive procedure
for Green's functions. The results show that within the ballistic transport
regime, the so called end-contacted geometry (of minimal GNR/electrode
interface area), is usually more advantageous for practical applications than
its side-contacted counterpart (with a larger coverage area), as far as the
electrical conductivity is concerned. As regards the giant magnetoresistance
coefficient, however, the situation is exactly opposite, since spin- splitting
effects are more pronounced in the lower conductive side-contacted setups.Comment: 8 pages, 4 figure
The effects of Zn Impurity on the Properties of Doped Cuprates in the Normal State
We study the interplay of quantum impurity, and collective spinon and holon
dynamics in Zn doped high-T cuprates in the normal state. The
two-dimensional t-t-J models with one and a small amount of Zn
impurity are investigated within a numerical method based on the double-time
Green function theory. We study the inhomogeneities of holon density and
antiferromagnetic correlation background in cases with different Zn
concentrations, and obtain that doped holes tend to assemble around the Zn
impurity with their mobility being reduced. Therefore a bound state of holon is
formed around the nonmagnetic Zn impurity with the effect helping Zn to
introduce local antiferromagnetism around itself. The incommensurate peaks we
obtained in the spin structure factor indicate that Zn impurities have effects
on mixing the q=(, ) and q=0 components in spin excitations.Comment: 5 pages, 3 figure
High efficiency photon counting using stopped light
Single-photon detection and photon counting play a central role in a large
number of quantum communication and computation protocols. While the efficiency
of state-of-the-art photo-detectors is well below the desired limits, quantum
state measurements in trapped ions can be carried out with efficiencies
approaching 100%. Here, we propose a method that can in principle achieve ideal
photon counting, by combining the techniques of photonic quantum memory and
ion-trap fluorescence detection: after mapping the quantum state of a
propagating light pulse onto metastable collective excitations of a trapped
cold atomic gas, it is possible to monitor the resonance fluorescence induced
by an additional laser field that only couples to the metastable excited state.
Even with a photon collection/detection efficiency as low as 10%, it is
possible to achieve photon counting with efficiency approaching 100%.Comment: 4 page
Giant Nonlocality near the Dirac Point in Graphene
Transport measurements have been a powerful tool for uncovering new
electronic phenomena in graphene. We report nonlocal measurements performed in
the Hall bar geometry with voltage probes far away from the classical path of
charge flow. We observe a large nonlocal response near the Dirac point in
fields as low as 0.1T, which persists up to room temperature. The nonlocality
is consistent with the long-range flavor currents induced by lifting of
spin/valley degeneracy. The effect is expected to contribute strongly to all
magnetotransport phenomena near the neutrality point
Quark-Meson Coupling Model for a Nucleon
The quark-meson coupling model for a nucleon is considered. The model
describes a nucleon as an MIT bag, in which quarks are coupled to scalar and
vector mesons. A set of coupled equations for the quark and the meson fields
are obtained and are solved in a self-consistent way. It is shown that the mass
of a nucleon as a dressed MIT bag interacting with sigma- and omega-meson
fields significantly differs from the mass of a free MIT bag. A few sets of
model parameters are obtained so that the mass of a dressed MIT bag becomes the
nucleon mass. The results of our calculations imply that the self-energy of the
bag in the quark-meson coupling model is significant and needs to be considered
in doing the nuclear matter calculations.Comment: 3 figure
- …