2 research outputs found
Bosonic and fermionic single-particle states in the Haldane approach to statistics for identical particles
We give two formulations of exclusion statistics (ES) using a variable number
of bosonic or fermionic single-particle states which depend on the number of
particles in the system. Associated bosonic and fermionic ES parameters are
introduced and are discussed for FQHE quasiparticles, anyons in the lowest
Landau level and for the Calogero-Sutherland model. In the latter case, only
one family of solutions is emphasized to be sufficient to recover ES;
appropriate families are specified for a number of formulations of the
Calogero-Sutherland model. We extend the picture of variable number of
single-particle states to generalized ideal gases with statistical interaction
between particles of different momenta. Integral equations are derived which
determine the momentum distribution for single-particle states and distribution
of particles over the single-particle states in the thermal equilibrium.Comment: 6 pages, REVTE