2,165 research outputs found

    Alpha-particle-induced breakup of the deuteron

    Get PDF
    Alpha-particle-induced deuteron breakup reactions have been studied in single-counter measurements at incident alpha-particle energies of 41.6 and 29.3 MeV. Simultaneous differential and total cross-section measurements have been carried out on protons, deuterons, and alpha particles. Unambiguous evidence for final-state resonance effects in the alpha-nucleon interactions have been obtained, particularly from the proton energy spectra; the p3/2 alpha-nucleon resonances corresponding to the He5 and Li5 ground states play important roles. As anticipated, phase-space-factor and zero-range Born-approximation calculations failed to reproduce the observed energy spectra. A more exact analysis which explicitly includes the alpha-nucleon interactions, represented by Gammel-Thaler phenomenological potentials, does provide good agreement with the experimental results both in spectrum shape and in total breakup cross section

    Line Emission from an Accretion Disk around a Rotating Black Hole: Toward a Measurement of Frame Dragging

    Get PDF
    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/c^2. However, if the inner disk radius extends below this limit, as is possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite for Cosmology and Astrophysics mission from MCG-6-30-15 (Tanaka et al. 1995) is 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. Both the frequency-shift profile and the light curve from a hot spot are valuable measures of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/c^2 if the inclination angle of the orbital plane is large.Comment: 15 pages (LaTex), 7 postscript figures; color plot (Figure 1) available at http://cfata2.harvard.edu/bromley/nu_nofun.html (This version contains a new subsection as well as minor corrections.

    Pattern discrimination in a human subject suffering visual agnosia

    Get PDF
    Since suffering a stroke some four years ago, H.J.A. has exhibited lack of visual pattern recognition, and CT scans show areas of neuronal damage localized bilaterally in the posterior cerebral cortex (Humphreys & Riddoch, 1984

    Precautionary advice about mobile phones: Public understandings and intended responses

    Get PDF
    The official published version can be obtained from the link below - Copyright @ Taylor & FrancisThere is a widespread academic and policy debate about public responses to precaution in public health campaigns. This paper explores these issues in relation to the precautionary stance adopted in the UK around the regulation of mobile telecommunications. The aim of the paper is to examine the nature of attitudes to precaution, and the way in which these, along with other relevant variables, relate to the intention to adopt relevant behaviours. The results from an experimental study (n = 173) indicate that people distinguish between two dimensions of precaution: firstly in relation to its value or necessity per se and secondly as anchored to notions of governance. The two variables differentially relate to other variables including trust and uncertainty, and are predictive of intended behaviour change indirectly, through worry about mobile phone risks. Precautionary advice was generally interpreted as causing concern rather than providing reassurance. The results suggest that precaution may be considered a valuable stance but this does not mean that it is seen as good governance or that it will reduce concern. Whilst the discourse of precaution is aimed at reducing concern, it appears that the uptake of relevant behaviours is largely triggered by worry

    Boring bivalve traces in modern reef and deeper-water macroid and rhodolith beds

    Get PDF
    Macroids and rhodoliths, made by encrusting acervulinid foraminifera and coralline algae, are widely recognized as bioengineers providing relatively stable microhabitats and increasing biodiversity for other species. Macroid and rhodolith beds occur in different depositional settings at various localities and bathymetries worldwide. Six case studies of macroid/rhodolith beds from 0 to 117m water depth in the Pacific Ocean (northern Central Ryukyu Islands, French Polynesia), eastern Australia (Fraser Island, One Tree Reef, Lizard Island), and the Mediterranean Sea (southeastern Spain) show that nodules in the beds are perforated by small-sized boring bivalve traces (Gastrochanolites). On average, boring bivalve shells (gastrochaenids and mytilids) are more slender and smaller than those living inside shallow-water rocky substrates. In the Pacific, Gastrochaena cuneiformis, Gastrochaena sp., Leiosolenus malaccanus, L. mucronatus, L. spp., and Lithophaga/Leiosolenus sp., for the first time identified below 20m water depth, occur as juvenile forms along with rare small-sized adults. In deep-water macroids and rhodoliths the boring bivalves are larger than the shallower counterparts in which growth of juveniles is probably restrained by higher overturn rates of host nodules. In general, most boring bivalves are juveniles that grew faster than the acervulinid foraminiferal and coralline red algal hosts and rarely reached the adult stage. As a consequence of phenotypic plasticity, small-sized adults with slow growth rates coexist with juveniles. Below wave base macroids and rhodoliths had the highest amounts of bioerosion, mainly produced by sponges and polychaete worms. These modern observations provide bases for paleobiological inferences in fossil occurrences.Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) 25247083Erasmus+FAR2012-2017FIR2016FIR2018PRIN "Biotic resilience to global change: biomineralization of planktonic and benthic calcifiers in the past, present and future" 2017RX9XXXYBioMed Central-Prepay Membership at the University of FerraraJunta de Andalucía RNM 190Committee on ResearchMuseum of PaleontologyDepartment of Integrative Biology, UC BerkeleyUC Pacific Rim Projec

    Testing the Gaussianity of the COBE-DMR data with spherical wavelets

    Full text link
    We investigate the Gaussianity of the 4-year COBE-DMR data (in HEALPix pixelisation) using an analysis based on spherical Haar wavelets. We use all the pixels lying outside the Galactic cut and compute the skewness, kurtosis and scale-scale correlation spectra for the wavelet coefficients at each scale. We also take into account the sensitivity of the method to the orientation of the input signal. We find a detection of non-Gaussianity at >99> 99 per cent level in just one of our statistics. Taking into account the total number of statistics computed, we estimate that the probability of obtaining such a detection by chance for an underlying Gaussian field is 0.69. Therefore, we conclude that the spherical wavelet technique shows no strong evidence of non-Gaussianity in the COBE-DMR data.Comment: latex file 7 pages, 6 figures, submitted to MNRA

    An Efficient Data Structure for Dynamic Two-Dimensional Reconfiguration

    Full text link
    In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation and reallocation. One key aspect is to develop efficient algorithms and data structures that exploit the two-dimensional geometry of a chip, instead of just one. We propose a new method for this task, based on the fractal structure of a quadtree, which allows dynamic segmentation of the chip area, along with dynamically adjusting the necessary communication infrastructure. We describe a number of algorithmic aspects, and present different solutions. We also provide a number of basic simulations that indicate that the theoretical worst-case bound may be pessimistic.Comment: 11 pages, 12 figures; full version of extended abstract that appeared in ARCS 201

    Learning to compare with few data for personalised human activity recognition.

    Get PDF
    Recent advances in meta-learning provides interesting opportunities for CBR research, in similarity learning, case comparison and personalised recommendations. Rather than learning a single model for a specific task, meta-learners adopt a generalist view of learning-to-learn, such that models are rapidly transferable to related (but different) new tasks. Unlike task-specific model training, a meta-learner’s training instance - referred to as a meta-instance - is a composite of two sets: a support set and a query set of instances. In our work, we introduce learning-to-learn personalised models from few data. We motivate our contribution through an application where personalisation plays an important role, mainly that of human activity recognition for self-management of chronic diseases. We extend the meta-instance creation process where random sampling of support and query sets is carried out on a reduced sample conditioned by a domain-specific attribute; namely the person or user, in order to create meta-instances for personalised HAR. Our meta-learning for personalisation is compared with several state-of-the-art meta-learning strategies: 1) matching network (MN), which learns an embedding for a metric function; 2) relation network (RN) that learns to predict similarity between paired instances; and 3) MAML, a model-agnostic machine-learning algorithm that optimizes the model parameters for rapid adaptation. Results confirm that personalised meta-learning significantly improves performance over non personalised meta-learners
    corecore