8,157 research outputs found
The JKind Model Checker
JKind is an open-source industrial model checker developed by Rockwell
Collins and the University of Minnesota. JKind uses multiple parallel engines
to prove or falsify safety properties of infinite state models. It is portable,
easy to install, performance competitive with other state-of-the-art model
checkers, and has features designed to improve the results presented to users:
inductive validity cores for proofs and counterexample smoothing for test-case
generation. It serves as the back-end for various industrial applications.Comment: CAV 201
Axion-like-particle decay in strong electromagnetic backgrounds
The decay of a massive pseudoscalar, scalar and U(1) boson into an
electron-positron pair in the presence of strong electromagnetic backgrounds is
calculated. Of particular interest is the constant-crossed-field limit,
relevant for experiments that aim to measure high-energy axion-like-particle
conversion into electron-positron pairs in a magnetic field. The total
probability depends on the quantum nonlinearity parameter - a product of field
and lightfront momentum invariants. Depending on the seed particle mass,
different decay regimes are identified. In the below-threshold case, we find
the probability depends on a non-perturbative tunnelling exponent depending on
the quantum parameter and the particle mass. In the above-threshold case, we
find that when the quantum parameter is varied linearly, the probability
oscillates nonlinearly around the spontaneous decay probability. A strong-field
limit is identified in which the threshold is found to disappear. In modelling
the fall-off of a quasi-constant-crossed magnetic field, we calculate
probabilities beyond the constant limit and investigate when the decay
probability can be regarded as locally constant.Comment: 22 pages, 7 figure
Macroscopic coherence effects in a mesoscopic system: Weak localization of thin silver films in an undergraduate lab
We present an undergraduate lab that investigates weak localization in thin
silver films. The films prepared in our lab have thickness, , between 60-200
\AA, a mesoscopic length scale. At low temperatures, the inelastic dephasing
length for electrons, , exceeds the thickness of the film (), and the films are then quasi-2D in nature. In this situation, theory
predicts specific corrections to the Drude conductivity due to coherent
interference between conducting electrons' wavefunctions, a macroscopically
observable effect known as weak localization. This correction can be destroyed
with the application of a magnetic field, and the resulting magnetoresistance
curve provides information about electron transport in the film. This lab is
suitable for Junior or Senior level students in an advanced undergraduate lab
course.Comment: 16 pages, 9 figures. Replaces earlier version of paper rejected by
Am. J. Phys. because of too much content on vacuum systems. New version deals
with the undergraduate experiment on weak localization onl
Dynamics of photoinduced Charge Density Wave-metal phase transition in K0.3MoO3
We present first systematic studies of the photoinduced phase transition from
the ground charge density wave (CDW) state to the normal metallic (M) state in
the prototype quasi-1D CDW system K0.3MoO3. Ultrafast non-thermal CDW melting
is achieved at the absorbed energy density that corresponds to the electronic
energy difference between the metallic and CDW states. The results imply that
on the sub-picosecond timescale when melting and subsequent initial recovery of
the electronic order takes place the lattice remains unperturbed.Comment: Phys. Rev. Lett., accepted for publicatio
Violations of Lorentz Covariance in Light Front Quark Models
Electromagnetic form factors of the nucleon from relativistic quark models
are analyzed: results from null-plane projection of the Feynman triangle
diagram are compared with a Bakamjian-Thomas model. The magnetic form factors
of the models differ by about 15% at spacelike momentum transfer 0.5 GeV^2,
while the charge form factors are much closer. Spurious contributions to
electromagnetic form factors due to violations of rotational symmetry are
eliminated from both models. One method changes magnetic form factors by about
10%, whereas the charge form factors stay nearly the same. Another one changes
the charge form factor of the Bakamjian-Thomas model by more than 50%.Comment: 19 pages, 9 figures, Late
Exploring Deep Space: Learning Personalized Ranking in a Semantic Space
Recommender systems leverage both content and user interactions to generate
recommendations that fit users' preferences. The recent surge of interest in
deep learning presents new opportunities for exploiting these two sources of
information. To recommend items we propose to first learn a user-independent
high-dimensional semantic space in which items are positioned according to
their substitutability, and then learn a user-specific transformation function
to transform this space into a ranking according to the user's past
preferences. An advantage of the proposed architecture is that it can be used
to effectively recommend items using either content that describes the items or
user-item ratings. We show that this approach significantly outperforms
state-of-the-art recommender systems on the MovieLens 1M dataset.Comment: 6 pages, RecSys 2016 RSDL worksho
Weight loss reduces head motion: Re-visiting a major confound in neuroimaging
Head motion during magnetic resonance imaging (MRI) induces image artifacts that affect virtually every brain measure. In parallel, crossâsectional observations indicate a correlation of head motion with age, psychiatric disease status and obesity, raising the possibility of a systematic artifactâinduced bias in neuroimaging outcomes in these conditions, due to the differences in head motion. Yet, a causal link between obesity and head motion has not been tested in an experimental design. Here, we show that a change in body mass index (BMI) (i.e., weight loss after bariatric surgery) systematically decreases head motion during MRI. In this setting, reduced imaging artifacts due to lower head motion might result in biased estimates of neural differences induced by changes in BMI. Overall, our finding urges the need to rigorously control for head motion during MRI to enable valid results of neuroimaging outcomes in populations that differ in head motion due to obesity or other conditions
Axion detection through resonant photon-photon collisions
We investigate the prospect of an alternative laboratory-based search for the coupling of axions and axionlike particles to photons. Here, the collision of two laser beams resonantly produces axions, and a signal photon is detected after magnetic reconversion, as in light-shining-through-walls (LSW) experiments. Conventional searches, such as LSW or anomalous birefringence measurements, are most sensitive to axion masses for which substantial coherence can be achieved; this is usually well below optical energies. We find that using currently available high-power laser facilities, the bounds that can be achieved by our approach outperform traditional LSW at axion masses between 0.5â6 eV, set by the optical laser frequencies and collision angle. These bounds can be further improved through coherent scattering off laser substructures, probing axion-photon couplings down to gaγγ ⌠10â8 GeVâ1, comparable with existing CAST bounds. Assuming a day long measurement per angular step, the QCD axion band can be reached
Lazy Abstraction-Based Controller Synthesis
We present lazy abstraction-based controller synthesis (ABCS) for
continuous-time nonlinear dynamical systems against reach-avoid and safety
specifications. State-of-the-art multi-layered ABCS pre-computes multiple
finite-state abstractions of varying granularity and applies reactive synthesis
to the coarsest abstraction whenever feasible, but adaptively considers finer
abstractions when necessary. Lazy ABCS improves this technique by constructing
abstractions on demand. Our insight is that the abstract transition relation
only needs to be locally computed for a small set of frontier states at the
precision currently required by the synthesis algorithm. We show that lazy ABCS
can significantly outperform previous multi-layered ABCS algorithms: on
standard benchmarks, lazy ABCS is more than 4 times faster
- âŠ