235 research outputs found

    Structural relaxation in a system of dumbbell molecules

    Full text link
    The interaction-site-density-fluctuation correlators, the dipole-relaxation functions, and the mean-squared displacements of a system of symmetric dumbbells of fused hard spheres are calculated for two representative elongations of the molecules within the mode-coupling theory for the evolution of glassy dynamics. For large elongations, universal relaxation laws for states near the glass transition are valid for parameters and time intervals similar to the ones found for the hard-sphere system. Rotation-translation coupling leads to an enlarged crossover interval for the mean-squared displacement of the constituent atoms between the end of the von Schweidler regime and the beginning of the diffusion process. For small elongations, the superposition principle for the reorientational α\alpha-process is violated for parameters and time intervals of interest for data analysis, and there is a strong breaking of the coupling of the α\alpha-relaxation scale for the diffusion process with that for representative density fluctuations and for dipole reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    Test of the semischematic model for a liquid of linear molecules

    Full text link
    We apply to a liquid of linear molecules the semischematic mode-coupling model, previously introduced to describe the center of mass (COM) slow dynamics of a network-forming molecular liquid. We compare the theoretical predictions and numerical results from a molecular dynamics simulation, both for the time and the wave-vector dependence of the COM density-density correlation function. We discuss the relationship between the presented analysis and the results from an approximate solution of the equations from molecular mode-coupling theory [R. Schilling and T. Scheidsteger, Phys. Rev. E 56 2932 (1997)].Comment: Revtex, 10 pages, 4 figure

    Test of mode coupling theory for a supercooled liquid of diatomic molecules.I. Translational degrees of freedom

    Full text link
    A molecular dynamics simulation is performed for a supercooled liquid of rigid diatomic molecules. The time-dependent self and collective density correlators of the molecular centers of mass are determined and compared with the predictions of the ideal mode coupling theory (MCT) for simple liquids. This is done in real as well as in momentum space. One of the main results is the existence of a unique transition temperature T_c, where the dynamics crosses over from an ergodic to a quasi-nonergodic behavior. The value for T_c agrees with that found earlier for the orientational dynamics within the error bars. In the beta- regime of MCT the factorization of space- and time dependence is satisfactorily fulfilled for both types of correlations. The first scaling law of ideal MCT holds in the von Schweidler regime, only, since the validity of the critical law can not be confirmed, due to a strong interference with the microscopic dynamics. In this first scaling regime a consistent description within ideal MCT emerges only, if the next order correction to the asymptotic law is taken into account. This correction is almost negligible for q=q_max, the position of the main peak in the static structure factor S(q), but becomes important for q=q_min, the position of its first minimum. The second scaling law, i.e. the time-temperature superposition principle, holds reasonably well for the self and collective density correlators and different values for q. The alpha-relaxation times tau_q^(s) and tau_q follow a power law in T-T_c over 2 -- 3 decades. The corresponding exponent gamma is weakly q-dependent and is around 2.55. This value is in agreement with the one predicted by MCT from the value of the von Schweidler exponent but at variance with the corresponding exponent gammaComment: 14 pages of RevTex, 19 figure

    Reorientational relaxation of a linear probe molecule in a simple glassy liquid

    Full text link
    Within the mode-coupling theory (MCT) for the evolution of structural relaxation in glass-forming liquids, correlation functions and susceptibility spectra are calculated characterizing the rotational dynamics of a top-down symmetric dumbbell molecule, consisting of two fused hard spheres immersed in a hard-sphere system. It is found that for sufficiently large dumbbell elongations, the dynamics of the probe molecule follows the same universal glass-transition scenario as known from the MCT results of simple liquids. The α\alpha-relaxation process of the angular-index-j=1 response is stronger, slower and less stretched than the one for j=2, in qualitative agreement with results found by dielectric-loss and depolarized-light-scattering spectroscopy for some supercooled liquids. For sufficiently small elongations, the reorientational relaxation occurs via large-angle flips, and the standard scenario for the glass-transition dynamics is modified for odd-j responses due to precursor phenomena of a nearby type-A MCT transition. In this case, a major part of the relaxation outside the transient regime is described qualitatively by the β\beta-relaxation scaling laws, while the α\alpha-relaxation scaling law is strongly disturbed.Comment: 40 pages. 10 figures as GIF-files, to be published in Phys. Rev.

    Static and Dynamic Properties of a Viscous Silica Melt Molecular Dynamics Computer Simulations

    Full text link
    We present the results of a large scale molecular dynamics computer simulation in which we investigated the static and dynamic properties of a silica melt in the temperature range in which the viscosity of the system changes from O(10^-2) Poise to O(10^2) Poise. We show that even at temperatures as high as 4000 K the structure of this system is very similar to the random tetrahedral network found in silica at lower temperatures. The temperature dependence of the concentration of the defects in this network shows an Arrhenius law. From the partial structure factors we calculate the neutron scattering function and find that it agrees very well with experimental neutron scattering data. At low temperatures the temperature dependence of the diffusion constants DD shows an Arrhenius law with activation energies which are in very good agreement with the experimental values. With increasing temperature we find that this dependence shows a cross-over to one which can be described well by a power-law, D\propto (T-T_c)^gamma. The critical temperature T_c is 3330 K and the exponent gamma is close to 2.1. Since we find a similar cross-over in the viscosity we have evidence that the relaxation dynamics of the system changes from a flow-like motion of the particles, as described by the ideal version of mode-coupling theory, to a hopping like motion. We show that such a change of the transport mechanism is also observed in the product of the diffusion constant and the life time of a Si-O bond, or the space and time dependence of the van Hove correlation functions.Comment: 30 pages of Latex, 14 figure

    A semi-schematic model for the center of mass dynamics in supercooled molecular liquids

    Full text link
    We introduce a semi-schematic mode-coupling model to describe the slow dynamics in molecular liquids, retaining explicitly only the description of the center of mass degrees of freedom. Angular degrees of freedom are condensed in a q-vector independent coupling parameter. We compare the time and q-dependence of the density fluctuation correlators with numerical data from a 250 ns long molecular dynamics simulation. Notwithstanding the choice of a network-forming liquid as a model for comparing theory and simulation, the model describes the main static and dynamic features of the relaxation in a broad q-vector range.Comment: Revtex, 2 figure

    Molecular mode-coupling theory applied to a liquid of diatomic molecules

    Full text link
    We study the molecular mode coupling theory for a liquid of diatomic molecules. The equations for the critical tensorial nonergodicity parameters Fll′m(q){\bf F}_{ll'}^m(q) and the critical amplitudes of the β\beta - relaxation Hll′m(q){\bf H}_{ll'}^m(q) are solved up to a cut off lcol_{co} = 2 without any further approximations. Here l,ml,m are indices of spherical harmonics. Contrary to previous studies, where additional approximations were applied, we find in agreement with simulations, that all molecular degrees of freedom vitrify at a single temperature TcT_c. The theoretical results for the non ergodicity parameters and the critical amplitudes are compared with those from simulations. The qualitative agreement is good for all molecular degrees of freedom. To study the influence of the cut off on the non ergodicity parameter, we also calculate the non ergodicity parameters for an upper cut off lco=4l_{co}=4. In addition we also propose a new method for the calculation of the critical nonergodicity parameterComment: 27 pages, 17 figure

    Propylene Carbonate Reexamined: Mode-Coupling β\beta Scaling without Factorisation ?

    Full text link
    The dynamic susceptibility of propylene carbonate in the moderately viscous regime above TcT_{\rm c} is reinvestigated by incoherent neutron and depolarised light scattering, and compared to dielectric loss and solvation response. Depending on the strength of α\alpha relaxation, a more or less extended β\beta scaling regime is found. Mode-coupling fits yield consistently λ=0.72\lambda=0.72 and Tc=182T_{\rm c}=182 K, although different positions of the susceptibility minimum indicate that not all observables have reached the universal asymptotics
    • …
    corecore