105 research outputs found

    Lamb shift in muonic deuterium atom

    Full text link
    We present new investigation of the Lamb shift (2P_{1/2}-2S_{1/2}) in muonic deuterium (mu d) atom using the three-dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear structure and recoil effects are calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. The results are compared with earlier performed calculations. The obtained numerical value of the Lamb shift 202.4139 meV can be considered as a reliable estimate for the comparison with forthcoming experimental data.Comment: 24 pages, 11 figures. arXiv admin note: text overlap with arXiv:hep-ph/061229

    Supersymmetric Corrections to the Threshold Production of Top Quark Pairs

    Full text link
    In this paper we investigate supersymmetric effects to the threshold production cross section of top quark pairs in electron positron annihilation. In particular, we consider the complete one-loop corrections from the strong and weak sector of the Minimal Supersymmetric Standard Model.Comment: 18 pages, 7 figure

    Lamb Shift in Muonic Hydrogen

    Full text link
    The Lamb shift in muonic hydrogen continues to be a subject of experimental and theoretical investigation. Here my older work on the subject is updated to provide a complementary calculation of the energies of the 2p-2s transitions in muonic hydrogen.Comment: 15 pages, no figures. 2 small misprints corrected. Published in Phys. Rev.

    Observations on the radiative corrections to pion beta-decay

    Full text link
    We find that, in the local V-A theory, the radiative corrections to pion beta-decay involving the weak vector current, when evaluated in the current algebra (CA) formulation in which quarks are the fundamental underlying fields, show a small difference with the more elementary calculations based directly on the pion fields. We show that this difference arises from a specific short-distance effect that depends on the algebra satisfied by the weak and electromagnetic currents. On the other hand, we present a simple theoretical argument that concludes that this difference does not occur when the CA formulation is compared with the chiral perturbation theory (chiPT) approach. Comparisons with previous studies, and with a more recent calculation based on chiPT, are included. We also briefly review the important differences between the results in the local V-A theory and the Standard Model.Comment: 5 pages, 1 figure. V2: two paragraphs have been added in Section III. Final version on PR

    A geometrical angle on Feynman integrals

    Get PDF
    A direct link between a one-loop N-point Feynman diagram and a geometrical representation based on the N-dimensional simplex is established by relating the Feynman parametric representations to the integrals over contents of (N-1)-dimensional simplices in non-Euclidean geometry of constant curvature. In particular, the four-point function in four dimensions is proportional to the volume of a three-dimensional spherical (or hyperbolic) tetrahedron which can be calculated by splitting into birectangular ones. It is also shown that the known formula of reduction of the N-point function in (N-1) dimensions corresponds to splitting the related N-dimensional simplex into N rectangular ones.Comment: 47 pages, including 42 pages of the text (in plain Latex) and 5 pages with the figures (in a separate Latex file, requires axodraw.sty) a note and three references added, minor problem with notation fixe

    Renorm-group, Causality and Non-power Perturbation Expansion in QFT

    Get PDF
    The structure of the QFT expansion is studied in the framework of a new "Invariant analytic" version of the perturbative QCD. Here, an invariant (running) coupling a(Q2/Λ2)=β1αs(Q2)/4πa(Q^2/\Lambda^2)=\beta_1\alpha_s(Q^2)/4\pi is transformed into a "Q2Q^2--analytized" invariant coupling aan(Q2/Λ2)A(x)a_{\rm an}(Q^2/\Lambda^2) \equiv {\cal A}(x) which, by constuction, is free of ghost singularities due to incorporating some nonperturbative structures. Meanwhile, the "analytized" perturbation expansion for an observable FF, in contrast with the usual case, may contain specific functions An(x)=[an(x)]an{\cal A}_n(x)= [a^n(x)]_{\rm an}, the "n-th power of a(x)a(x) analytized as a whole", instead of (A(x))n({\cal A}(x))^n. In other words, the pertubation series for F(x)F(x), due to analyticity imperative, may change its form turning into an {\it asymptotic expansion \`a la Erd\'elyi over a nonpower set} {An(x)}\{{\cal A}_n(x)\}. We analyse sets of functions {An(x)}\{{\cal A}_n(x)\} and discuss properties of non-power expansion arising with their relations to feeble loop and scheme dependence of observables. The issue of ambiguity of the invariant analytization procedure and of possible inconsistency of some of its versions with the RG structure is also discussed.Comment: 12 pages, LaTeX To appear in Teor. Mat. Fizika 119 (1999) No.

    Explicitly symmetrical treatment of three-body phase space

    Full text link
    We derive expressions for three-body phase space that are explicitly symmetrical in the masses of the three particles. We study geometrical properties of the variables involved in elliptic integrals and demonstrate that it is convenient to use the Jacobian zeta function to express the results in four and six dimensions.Comment: 20 pages, latex, 2 postscript figure

    Two-loop QED corrections with closed fermion loops

    Full text link
    We report a calculation of all two-loop QED corrections with closed fermion loops for the n=1 and n=2 states of H-like ions and for a wide range of the nuclear charge numbers Z=1-100. The calculation is performed to all orders in the binding-strength parameter (Z \alpha), with the exception that in a few cases the free-loop approximation is employed in the treatment of the fermion loops. Detailed comparison is made with previous (Z \alpha)-expansion calculations and the higher-order remainder term to order \alpha^2 (Z \alpha)^6 is identified.Comment: Analysis of the finite nuclear size effect is extended in the revised version. 12 pages, 5 figures, 4 table

    Small world effect in an epidemiological model

    Full text link
    A model for the spread of an infection is analyzed for different population structures. The interactions within the population are described by small world networks, ranging from ordered lattices to random graphs. For the more ordered systems, there is a fluctuating endemic state of low infection. At a finite value of the disorder of the network, we find a transition to self-sustained oscillations in the size of the infected subpopulation

    Improvements to the Method of Dispersion Relations for B Nonleptonic Decays

    Get PDF
    We bring some clarifications and improvements to the method of dispersion relations in the external masses variables, that we proposed recently for investigating the final state interactions in the B nonleptonic decays. We first present arguments for the existence of an additional term in the dispersion representation, which arises from an equal-time commutator in the LSZ formalism and can be approximated by the conventional factorized amplitude. The reality properties of the spectral function and the Goldberger-Treiman procedure to perform the hadronic unitarity sum are analyzed in more detail. We also improve the treatment of the strong interaction part by including the contributions of both t and u-channel trajectories in the Regge amplitudes. Applications to the B0π+πB^0\to \pi^+\pi^- and B+π0K+B^+\to \pi^0 K^+ decays are presented.Comment: 16 pages, 4 new figures. modifications of the dispersion representatio
    corecore