8 research outputs found

    Development of Near Infrared Spectroscopy Models for Quantitative Prediction of the Content of Bioactive Compounds in Olive Leaves

    Get PDF
    The objective of this work was to evaluate the ability of artificial neural networks (ANN) in near infrared (NIR) spectra calibration models to predict the total polyphenolic content, antioxidant activity, and extraction yield of the olive leaves aqueous extracts prepared with three extraction procedures (conventional extraction, microwave-assisted extraction, and microwave-ultrasound-assisted extraction). Partial least squares (PLS) models were developed from principal component analyses (PCA) scores of NIR spectra of olive leaf aqueous extracts in terms of total polyphenols concentration, antioxidant activity, and extraction yield for each extraction procedure. PLS models were used to view which PCA scores are the best suited as input for ANN based on three output variables. ANN showed very good correlation of NIRs and all tested variables, especially in the case of total polyphenolic content (TPC). Therefore, ANN can be used for the prediction of total polyphenol concentrations, antioxidant activity, and extraction yield of plant extracts based on the NIR spectra

    Prediction of pH Value of Aqueous Acidic and Basic Deep Eutectic Solvent Using COSMO-RS σ Profiles’ Molecular Descriptors

    No full text
    The aim of this work was to develop a simple and easy-to-apply model to predict the pH values of deep eutectic solvents (DESs) over a wide range of pH values that can be used in daily work. For this purpose, the pH values of 38 different DESs were measured (ranging from 0.36 to 9.31) and mathematically interpreted. To develop mathematical models, DESs were first numerically described using σ profiles generated with the COSMOtherm software. After the DESs’ description, the following models were used: (i) multiple linear regression (MLR), (ii) piecewise linear regression (PLR), and (iii) artificial neural networks (ANNs) to link the experimental values with the descriptors. Both PLR and ANN were found to be applicable to predict the pH values of DESs with a very high goodness of fit (R2independent validation > 0.8600). Due to the good mathematical correlation of the experimental and predicted values, the σ profile generated with COSMOtherm could be used as a DES molecular descriptor for the prediction of their pH values
    corecore