46 research outputs found

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Rb 4

    No full text

    Rb 4

    No full text

    Preparation et étude de diodes laser a GaInAsSb-GaAlAsSb fonctionnant en continu à 80K

    No full text
    Double heterojunctions (DH) Ga0.73_{0.73}AI0.27_{0.27}As0.02_{0.02}Sb0.98_{0.98} (pp)/Ga0.83_{0.83}ln0.17_{0.17}As0.15_{0.15} Sb0.85_{0.85} (pp)/Ga0.73_{0.73}AI0.27_{0.27}AS0.02_{0.02}Sb0.98_{0.98} (nn) have been grown by liquid phase epitaxy on GaSb(100)n substrate. Confiming properties of these DH have been analyzed. Gain guided DH laser diodes have been prepared and studied by varying the temperature. Laser emission has been obtained in continuous mode up to 140K and in pulsed mode up to room temperature. Laser wavelength is 1.95 μ\mum at 80K and 2.17 μ\mum at 298K. The emitted power is about 1 mW. The threshold current intensity increases from 150 mA at 80K up to 1.2A at 298K, with a characteristic temperature T0approx110T_0 approx 110K. External quantum efficiency is 6-10% per face at 80K and 1.5% per face at room temperature. Far field pattern at threshold is monolobe, with a full beam width at half power perpendicular to the junction plane θ52\theta_{\perp}\approx 52^{\circ} and in the plane ofthejunction θ\theta //\approx 11^{\circ}. Modelisation ofthe beam divergence θ\theta_{\perp} allowed us to evaluate the refractive index of the active layer at threshold: nact=3.79n_{\rm act} = 3.79.Des doubles hétérojonctions (DH) Ga0,73_{0,73}AI0,27_{0,27}As0,02_{0,02}Sb0,98_{0,98} (pp)/Ga0,83_{0,83}ln0,17_{0,17}As0,15_{0,15} Sb0,85_{0,85} (pp)/Ga0,73_{0,73}AI0,27_{0,27}AS0,02_{0,02}Sb0,98_{0,98} (nn) ont été obtenues par épitaxie en phase liquide sur substrat GaSb (100)n. Les propriétés confinantes de ces DH ont été analysées. Des diodes laser à guidage par le gain ont été préparées et caractérisées en température. L'émission laser a été obtenue jusqu'à 140K en régime continu et jusqu'à température ambiante en régime pulsé. La longueur d'onde d'émission est centrée vers 1,95 μ\mum à 80K et vers2,17 μ\mum à 298K, La puissance émise est de l'ordre du mW L'intensité de courant de seuil varie de 150 mA (80K) à 1,2 A (298K) avec une température caractéristique élevée (To \approx 110K) . Le rendement quantique différentiel externe est de 6 à 10 % par face à 80K et de 1,5 % par face à température ambiante. Le champ émis au seuil est monolobe avec θ\theta //\approx 11^{\circ} et θ52\theta_{\perp}\approx 52^{\circ}. Une modélisation du champ perpendiculaire a permis de déterminer l'indice de la couche active au seuil : nact=3,79n_{\rm act} = 3,79

    EXAFS STUDY OF A QUITE RELAXED ZINC-BLENDE LATTICE : THE GaAsySb1-y ALLOY

    No full text
    Les spectres EXAFS après les seuils K de Ga et As, et LIII de Sb sur GaAsySby ont été enregistrés. L'analyse des spectres, dans le cas du seuil Ga, pour des compositions situées de part et d'autre de la lacune de miscibilité (0 ⩽ y ⩽ .11, .9 ⩽ y ⩽ 1), conduit aux distances entre Ga et ses plus proches voisins (NN). La distribution des distances cation-anion est bimodale (d (Ga-As) = 2.46 ± .02 Å, d (Ga-Sb) = 2.63 ± .01 Å) et très proche de la limite de PAULING-HUGGINS. Cette grande relaxation de la structure blende de zinc s'explique bien à la lumière d'un modèle de champ de forces de valence (Keating), en cherchant pour quelle configuration les forces élastiques agissant sur chaque atome s'annulent : les deux sous-réseaux apparaissent distordus, tandis qu'une distribution multimodale des distances entre seconds voisins (NNN) est prédite, en accord avec l'élargissement du pic correspondant de la fonction de distribution radiale.EXAFS measurements above the K-edge of Ga, As and the LIII-edge of Sb in GaAsySby are performed. The analysis of data above the Ga K-edge, on both sides of the miscibility gap (0 ⩽ y ⩽ .11, .9 ⩽ y ⩽ 1), leads to nearest-neighbor (NN) distances around Ga atom. The distribution of cation-anion distances is bimodal (d(Ga-As) = 2.46 ± 02 Å, d (Ga-Sb) = 2.63 ± .01 Å) and very close to the PAULING-HUGGINS limit. This great relaxation of the zinc-blende structure is explained by using a Valence-Force-Field model (Keating) and searching for the configuration at which the elastic forces acting upon every atom vanish : both sublattices are distorded and multimodal second-neighbor distribution of distance is predicted, in agreement with the broadening of the corresponding peak of the radial distribution (NNN distances)

    Diagramme de phases et croissance par épitaxie en phase liquide du GaxIn1-xSb

    No full text
    An accurate ternary phase diagram in the In rich region of the Ga-In-Sb system has been established. The liquidus data were obtained from DTA measurements on samples of predetermined composition. The solidus data were found by measuring the Ga concentration of crystals grown from In rich solutions by liquid phase epitaxy. Liquidus isotherms and solidus lines were calculated using a regular solution model. By fitting some thermodynamical parameters, good agreement with experimental points were obtained. GaxIn1-xSb epitaxial layers with 0 ≤ x ≤ 0.92 were grown on [111 ] InSb substrates in the temperature range of 400 °C-300 °C. Homogeneity and other layer characteristics were examined. Some electrical measurements were reported.Un diagramme de phase précis dans la région riche en indium du système ternaire Ga-In-Sb a été établi. Les points du liquidus ont été obtenus par analyse thermique différentielle d'échantillons de composition déterminée. Les points du solidus résultent de la mesure de la concentration en gallium de cristaux ternaires épitaxiés à partir de liquides riches en indium. Les isothermes du liquidus et les courbes solidus ont été calculés sur le modèle des solutions régulières. En ajustant certains paramètres thermodynamiques, l'accord obtenu avec les points expérimentaux est excellent côté indium du diagramme ternaire. Des couches de GaxIn1-xSb de 0 ≤ x ≤ 0,92 ont été épitaxiées sur substrats d'InSb orientés [111] dans la gamme de températures 400-300 °C. L'homogénéité et les autres caractéristiques de ces couches ont été examinées. Quelques résultats de mesures électriques sont fournis

    Spectres Raman du 2e ordre dans les cristaux mixtes Ga1— xAlxSb

    No full text
    The second order Raman spectra of the mixed crystal Ga1-xAl xSb have been measured for 0 < x < 1. The combinations of phonons as a fonction of concentration have been investigated. A one-mode behaviour for the acoustical phonons and a two-mode behaviour for the optical phonons are found. In addition, combinations of optical GaSb + AlSb like modes have been emphasized.Les spectres de diffusion Raman du deuxième ordre du cristal mixte Ga 1-xAlxSb ont été mesurés pour 0 < x < 1. L'évolution des combinaisons de phonons avec la concentration a permis de mettre en évidence un comportement à un mode pour les phonons acoustiques et un comportement à deux modes pour les phonons optiques. Les spectres font apparaître des combinaisons de phonons optiques du type GaSb + AlSb

    Croissance par épitaxie en phase liquide et caractérisation d'alliages Ga1-xIoxAsySb1-y à paramètre de maille accordé sur celui de GaSb

    No full text
    The Ga1-xInxAsy Sb1-y solid solution was grown by liquid phase epitaxy on GaSb substrate oriented (100) and (111)B, in the composition range x ≤ 0.22 (y ≤ 0.20 ). The experimental conditions of layer growth with a lattice-mismatch less than 10-3 are given, and compared with the DLPOC model of phase diagram calculation. It is shown that the limitation x < 0.22 arises from the existence of a miscibility gap of the solid phase, no LPE growth could be performed inside this miscibility gap. The GaSb-lattice-matched Ga1-xIn xAsySb1-y epilayers are uniform with a smooth and shiny (100) surface, and a slightly rippled and shiny (111)B surface. They show EPD ∼ 5 x 104 cm -2 and high residual doping (NA - ND) ∼ 1 x 1017 cm-3. The variations with x of the energy gap E0 and the spin orbit splitting Δ0 of the lattice-matched Ga1-xInxAs ySb1-y layers were determined by the electroreflectance method, at 300 K and 77 K. Due to miscibility gap, useful wavelengths at 300 K are in the range : 1.7-2.4 μm and 4.3-4.5 μm and at 77 K : 1.55-2.06 and 3.5-3.6 μm.La solution solide Ga1-xInxAs ySb1-y a été cristallisée par la technique d'épitaxie en phase liquide sur substrat GaSb orienté (100) et (111)B dans la gamme de composition x ≤ 0,22 (y ≤ 0,20). Les conditions expérimentales de croissance de couches accordées à mieux que 10-3 sont fournies, et comparées à des prévisions théoriques basées sur le modèle DLPOC de calcul du diagramme d'équilibre des phases. Il est montré que la limitation à x = 0,22 provient de l'existence d'une lacune de miscibilité de la phase solide, aucune croissance EPL à l'intérieur de cette lacune n'ayant pu se réaliser. Les couches de Ga1- xInxAsySb1- y accordées sur GaSb sont uniformes et à surface lisse et brillante (cas (100)), légèrement ondulée et brillante (cas (111B): Leur taux de dislocations (EPD) est environ 5 x 104 cm-2, le dopage résiduel est élevé p ∼ 1 x 1017 cm-3. L'évolution avec la composition de l'énergie de transition de bande interdite E 0 et de la séparation spin-orbite Δ0 des couches accordées a été déterminée à partir de mesures d'électroréflexion à 300 K et à 77 K. Par suite des limitations imposées par la lacune de miscibilité, les applications de l'alliage Ga1-xInxAs ySb1-y sont réservées, à 300 K, aux domaines de longueurs d'onde 1,7-2,4 μm et 4,3-4,5 μm, et à 77 K aux domaines 1,55-2,06 μm et 3,5-3,6 μm
    corecore