872 research outputs found
Fractional Integro-Differential Equations for Electromagnetic Waves in Dielectric Media
We prove that the electromagnetic fields in dielectric media whose
susceptibility follows a fractional power-law dependence in a wide frequency
range can be described by differential equations with time derivatives of
noninteger order. We obtain fractional integro-differential equations for
electromagnetic waves in a dielectric. The electromagnetic fields in
dielectrics demonstrate a fractional power-law relaxation. The fractional
integro-differential equations for electromagnetic waves are common to a wide
class of dielectric media regardless of the type of physical structure, the
chemical composition, or the nature of the polarizing species (dipoles,
electrons, or ions)
Non-intrinsic origin of the Colossal Dielectric Constants in CaCu3Ti4O12
The dielectric properties of CaCu3Ti4O12, a material showing colossal values
of the dielectric constant, were investigated in a broad temperature and
frequency range extending up to 1.3 GHz. A detailed equivalent circuit analysis
of the results and two crucial experiments, employing different types of
contacts and varying sample thickness, provide clear evidence that the
apparently high values of the dielectric constant in CaCu3Ti4O12 are
non-intrinsic and due to electrode polarization effects. The intrinsic
properties of CaCu3Ti4O12 are characterized by charge transport via hopping of
localized charge carriers and a relatively high dielectric constant of the
order of 100.Comment: 4 pages, 4 figure
Subordination model of anomalous diffusion leading to the two-power-law relaxation responses
We derive a general pattern of the nonexponential, two-power-law relaxation
from the compound subordination theory of random processes applied to anomalous
diffusion. The subordination approach is based on a coupling between the very
large jumps in physical and operational times. It allows one to govern a
scaling for small and large times independently. Here we obtain explicitly the
relaxation function, the kinetic equation and the susceptibility expression
applicable to the range of experimentally observed power-law exponents which
cannot be interpreted by means of the commonly known Havriliak-Negami fitting
function. We present a novel two-power relaxation law for this range in a
convenient frequency-domain form and show its relationship to the
Havriliak-Negami one.Comment: 5 pages; 3 figures; corrected versio
Fractional Equations of Curie-von Schweidler and Gauss Laws
The dielectric susceptibility of most materials follows a fractional
power-law frequency dependence that is called the "universal" response. We
prove that in the time domain this dependence gives differential equations with
derivatives and integrals of noninteger order. We obtain equations that
describe "universal" Curie-von Schweidler and Gauss laws for such dielectric
materials. These laws are presented by fractional differential equations such
that the electromagnetic fields in the materials demonstrate "universal"
fractional damping. The suggested fractional equations are common (universal)
to a wide class of materials, regardless of the type of physical structure,
chemical composition or of the nature of the polarization.Comment: 11 pages, LaTe
Plastic-crystalline solid-state electrolytes: Ionic conductivity and orientational dynamics in nitrile mixtures
Many plastic crystals, molecular solids with long-range, center-of-mass
crystalline order but dynamic disorder of the molecular orientations, are known
to exhibit exceptionally high ionic conductivity. This makes them promising
candidates for applications as solid-state electrolytes, e.g., in batteries.
Interestingly, it was found that the mixing of two different
plastic-crystalline materials can considerably enhance the ionic dc
conductivity, an important benchmark quantity for electrochemical applications.
An example is the admixture of different nitriles to succinonitrile, the latter
being one of the most prominent plastic-crystalline ionic conductors. However,
until now only few such mixtures were studied. In the present work, we
investigate succinonitrile mixed with malononitrile, adiponitrile, and
pimelonitrile, to which 1 mol% of Li ions were added. Using differential
scanning calorimetry and dielectric spectroscopy, we examine the phase behavior
and the dipolar and ionic dynamics of these systems. We especially address the
mixing-induced enhancement of the ionic conductivity and the coupling of the
translational ionic mobility to the molecular reorientational dynamics,
probably arising via a "revolving-door" mechanism.Comment: 9 pages, 7 figures; revised version as accepted for publication in J.
Chem. Phy
Dielectric response due to stochastic motion of pinned domain walls
We study the contribution of stochastic motion of a domain wall (DW) to the
dielectric AC susceptibility for low frequencies. Using the concept of waiting
time distributions, which is related to the energy landscape of the DW in a
disordered medium, we derive the power-law behavior of the complex
susceptibility observed recently in some ferroelectrics below Curie
temperature.Comment: 5 pages, 2 figures, revtex
Power-law decay in first-order relaxation processes
Starting from a simple definition of stationary regime in first-order
relaxation processes, we obtain that experimental results are to be fitted to a
power-law when approaching the stationary limit. On the basis of this result we
propose a graphical representation that allows the discrimination between
power-law and stretched exponential time decays. Examples of fittings of
magnetic, dielectric and simulated relaxation data support the results.Comment: to appear in Phys. Rev. B; 4 figure
Dielectric behavior of Copper Tantalum Oxide
A thorough investigation of the dielectric properties of Cu2Ta4O12, a
material crystallizing in a pseudo-cubic, perovskite-derived structure is
presented. We measured the dielectric constant and conductivity of single
crystals in an exceptionally broad frequency range up to GHz frequencies and at
temperatures from 25 - 500 K. The detected dielectric constant is unusually
high (reaching values up to 105) and almost constant in a broad frequency and
temperature range. Cu2Ta4O12 possesses a crystal structure similar to
CaCu3Ti4O12, the compound for which such an unusually high dielectric constant
was first observed. An analysis of the results using a simple equivalent
circuit and measurements with different types of contact revealed that
extrinsic interfacial polarization effects, derived from surface barrier
capacitors are the origin of the observed giant dielectric constants. The
intrinsic properties of Cu2Ta4O12 are characterized by a (still relatively
high) dielectric constant in the order of 100 and by charge transport via
hopping conduction of Anderson-localized charge carriers.Comment: 18 pages, 6 figures, submitted to Jouranl of Physical Chemestr
Universal Electromagnetic Waves in Dielectric
The dielectric susceptibility of a wide class of dielectric materials
follows, over extended frequency ranges, a fractional power-law frequency
dependence that is called the "universal" response. The electromagnetic fields
in such dielectric media are described by fractional differential equations
with time derivatives of non-integer order. An exact solution of the fractional
equations for a magnetic field is derived. The electromagnetic fields in the
dielectric materials demonstrate fractional damping. The typical features of
"universal" electromagnetic waves in dielectric are common to a wide class of
materials, regardless of the type of physical structure, chemical composition,
or of the nature of the polarizing species, whether dipoles, electrons or ions.Comment: 19 pages, LaTe
Evidence of secondary relaxations in the dielectric spectra of ionic liquids
We investigated the dynamics of a series of room temperature ionic liquids
based on the same 1-butyl-3-methyl imidazolium cation and different anions by
means of broadband dielectric spectroscopy covering 15 decades in frequency
(10^(-6)-10^9 Hz), and in the temperature range from 400 K down to 35 K. An
ionic conductivity is observed above the glass transition temperature T_{g}
with a relaxation in the electric modulus representation. Below T_{g}, two
relaxation processes appear, with the same features as the secondary
relaxations typically observed in molecular glasses. The activation energy of
the secondary processes and their dependence on the anion are different. The
slower process shows the characteristics of an intrinsic Johari-Goldstein
relaxation, in particular an activation energy E_{beta}=24k_{B}T_{g} is found,
as observed in molecular glasses.Comment: Major revision, submitted to Phys. Rev. Let
- …