11,783 research outputs found
Temperature and Disorder Chaos in Low Dimensional Directed Paths
The responses of a dimensional directed path to temperature and
to potential variations are calculated exactly, and are governed by the same
scaling form. The short scale decorrelation (strong correlation regime) leads
to the overlap length predicted by heuristic approaches; its temperature
dependence and large absolute value agree with scaling and numerical
observations. Beyond the overlap length (weak correlation regime), the
correlation decays algebraically. A clear physical mechanism explains the
behavior in each case: the initial decorrelation is due to `fragile droplets,'
which contribute to the entropy fluctuations as , while the residual
correlation results from accidental intersections of otherwise uncorrelated
configurations.Comment: four pages, revtex4; minor modifications in the text and typos
correcte
Anomalous surface waves from Lop Nor nuclear explosions: Observations and numerical modeling
Surface waves from the Chinese test site of Lop Nor are analyzed using long-period and broadband stations located at regional and teleseismic distances and at different azimuths. For most azimuths, strong Love waves between 0.02 and 0.045 Hz are observed with an amplitude of up to 10 times that of the Rayleigh waves. In addition, an anomalous early Rayleigh wave train is observed at some stations in western Europe. Due to a particularly favorable station and source configuration, it is possible to isolate the areas where the anomalies are created. The high-amplitude Love waves must be attributed to either source effects or path effects immediately north of Lop Nor. The early wave train is shown to be due to a partial energy conversion between Love and Rayleigh waves, probably at the Tornquist Zone. To estimate the possible contribution from surface wave conversions to the observed anomalies, numerical simulations are carried out with the indirect boundary element method. The simulations show that a relatively small variation of crustal thickness can induce Rayleigh to Love wave conversions between 0.02 and 0.1 Hz frequency. The calculated amplitudes of the Love waves are significant (up to 35% of the amplitude of the incoming Rayleigh waves), but they are too small to fit the observed amplitude anomaly. The observed converted waves and the numerical results nevertheless indicate that surface wave conversions can be significant across strong lateral crustal heterogeneities. In particular, the conversions due to changes in crustal thickness are located in the period interval which is routinely used for estimation of Ms
Drosophila as a model system to study nonautonomous mechanisms affecting tumour growth and cell death
The study of cancer has represented a central focus in medical research for over a century. The great complexity and constant evolution of the pathology require the use of multiple research model systems and interdisciplinary approaches. This is necessary in order to achieve a comprehensive understanding into the mechanisms driving disease initiation and progression, to aid the development of appropriate therapies. In recent decades, the fruit fly Drosophila melanogaster and its associated powerful genetic tools have become a very attractive model system to study tumour-intrinsic and non-tumour-derived processes that mediate tumour development in vivo. In this review, we will summarize recent work on Drosophila as a model system to study cancer biology. We will focus on the interactions between tumours and their microenvironment, including extrinsic mechanisms affecting tumour growth and how tumours impact systemic host physiology
Controllability for chains of dynamical scatterers
In this paper, we consider a class of mechanical models which consists of a
linear chain of identical chaotic cells, each of which has two small lateral
holes and contains a rotating disk at its center. Particles are injected at
characteristic temperatures and rates from stochastic heat baths located at
both ends of the chain. Once in the system, the particles move freely within
the cells and will experience elastic collisions with the outer boundary of the
cells as well as with the disks. They do not interact with each other but can
transfer energy from one to another through collisions with the disks. The
state of the system is defined by the positions and velocities of the particles
and by the angular positions and angular velocities of the disks. We show that
each model in this class is controllable with respect to the baths, i.e. we
prove that the action of the baths can drive the system from any state to any
other state in a finite time. As a consequence, one obtains the existence of at
most one regular invariant measure characterizing its states (out of
equilibrium)
Quantum Corrections to the Cosmological Evolution of Conformally Coupled Fields
Because the source term for the equations of motion of a conformally coupled
scalar field, such as the dilaton, is given by the trace of the matter energy
momentum tensor, it is commonly assumed to vanish during the radiation
dominated epoch in the early universe. As a consequence, such fields are
generally frozen in the early universe. Here we compute the finite temperature
radiative correction to the source term and discuss its consequences on the
evolution of such fields in the early universe. We discuss in particular, the
case of scalar tensor theories of gravity which have general relativity as an
attractor solution. We show that, in some cases, the universe can experience an
early phase of contraction, followed by a non-singular bounce, and standard
expansion. This can have interesting consequences for the abundance of thermal
relics; for instance, it can provide a solution to the gravitino problem. We
conclude by discussing the possible consequences of the quantum corrections to
the evolution of the dilaton.Comment: 24 pages, 7 figure
Rotational Heisenberg Inequalities
Since their discovery in 1927, the Heisenberg Inequalities have become an
icon of quantum mechanics. Often inappropriately referred to as the Uncertainty
Principle, these inequalities relating the standard deviations of the position
and momentum observables to Planck's constant are one of the cornerstones of
the quantum formalism even if the physical interpretation of quantum mechanics
remains still open to controversy nowadays. The Heisenberg Inequalities
governing translational motion are well understood. However, the corresponding
inequalities pertaining to rotational motion have not been established so far.
To fill this gap, we present here the Rotational Heisenberg Inequalities
relating the standard deviations of the orientation axis and orbital angular
momentum observables of an isolated molecule. The reason for choosing this
system is that a molecule separated from its environment corresponds to a bound
system preserving the orbital angular momentum.Comment: 6 pages, 2 figures. arXiv admin note: substantial text overlap with
arXiv:1412.211
- …