11,783 research outputs found

    Temperature and Disorder Chaos in Low Dimensional Directed Paths

    Full text link
    The responses of a 1+ϵ1+\epsilon dimensional directed path to temperature and to potential variations are calculated exactly, and are governed by the same scaling form. The short scale decorrelation (strong correlation regime) leads to the overlap length predicted by heuristic approaches; its temperature dependence and large absolute value agree with scaling and numerical observations. Beyond the overlap length (weak correlation regime), the correlation decays algebraically. A clear physical mechanism explains the behavior in each case: the initial decorrelation is due to `fragile droplets,' which contribute to the entropy fluctuations as T\sqrt{T}, while the residual correlation results from accidental intersections of otherwise uncorrelated configurations.Comment: four pages, revtex4; minor modifications in the text and typos correcte

    Anomalous surface waves from Lop Nor nuclear explosions: Observations and numerical modeling

    Get PDF
    Surface waves from the Chinese test site of Lop Nor are analyzed using long-period and broadband stations located at regional and teleseismic distances and at different azimuths. For most azimuths, strong Love waves between 0.02 and 0.045 Hz are observed with an amplitude of up to 10 times that of the Rayleigh waves. In addition, an anomalous early Rayleigh wave train is observed at some stations in western Europe. Due to a particularly favorable station and source configuration, it is possible to isolate the areas where the anomalies are created. The high-amplitude Love waves must be attributed to either source effects or path effects immediately north of Lop Nor. The early wave train is shown to be due to a partial energy conversion between Love and Rayleigh waves, probably at the Tornquist Zone. To estimate the possible contribution from surface wave conversions to the observed anomalies, numerical simulations are carried out with the indirect boundary element method. The simulations show that a relatively small variation of crustal thickness can induce Rayleigh to Love wave conversions between 0.02 and 0.1 Hz frequency. The calculated amplitudes of the Love waves are significant (up to 35% of the amplitude of the incoming Rayleigh waves), but they are too small to fit the observed amplitude anomaly. The observed converted waves and the numerical results nevertheless indicate that surface wave conversions can be significant across strong lateral crustal heterogeneities. In particular, the conversions due to changes in crustal thickness are located in the period interval which is routinely used for estimation of Ms

    Drosophila as a model system to study nonautonomous mechanisms affecting tumour growth and cell death

    Get PDF
    The study of cancer has represented a central focus in medical research for over a century. The great complexity and constant evolution of the pathology require the use of multiple research model systems and interdisciplinary approaches. This is necessary in order to achieve a comprehensive understanding into the mechanisms driving disease initiation and progression, to aid the development of appropriate therapies. In recent decades, the fruit fly Drosophila melanogaster and its associated powerful genetic tools have become a very attractive model system to study tumour-intrinsic and non-tumour-derived processes that mediate tumour development in vivo. In this review, we will summarize recent work on Drosophila as a model system to study cancer biology. We will focus on the interactions between tumours and their microenvironment, including extrinsic mechanisms affecting tumour growth and how tumours impact systemic host physiology

    Controllability for chains of dynamical scatterers

    Full text link
    In this paper, we consider a class of mechanical models which consists of a linear chain of identical chaotic cells, each of which has two small lateral holes and contains a rotating disk at its center. Particles are injected at characteristic temperatures and rates from stochastic heat baths located at both ends of the chain. Once in the system, the particles move freely within the cells and will experience elastic collisions with the outer boundary of the cells as well as with the disks. They do not interact with each other but can transfer energy from one to another through collisions with the disks. The state of the system is defined by the positions and velocities of the particles and by the angular positions and angular velocities of the disks. We show that each model in this class is controllable with respect to the baths, i.e. we prove that the action of the baths can drive the system from any state to any other state in a finite time. As a consequence, one obtains the existence of at most one regular invariant measure characterizing its states (out of equilibrium)

    Quantum Corrections to the Cosmological Evolution of Conformally Coupled Fields

    Full text link
    Because the source term for the equations of motion of a conformally coupled scalar field, such as the dilaton, is given by the trace of the matter energy momentum tensor, it is commonly assumed to vanish during the radiation dominated epoch in the early universe. As a consequence, such fields are generally frozen in the early universe. Here we compute the finite temperature radiative correction to the source term and discuss its consequences on the evolution of such fields in the early universe. We discuss in particular, the case of scalar tensor theories of gravity which have general relativity as an attractor solution. We show that, in some cases, the universe can experience an early phase of contraction, followed by a non-singular bounce, and standard expansion. This can have interesting consequences for the abundance of thermal relics; for instance, it can provide a solution to the gravitino problem. We conclude by discussing the possible consequences of the quantum corrections to the evolution of the dilaton.Comment: 24 pages, 7 figure

    Rotational Heisenberg Inequalities

    Get PDF
    Since their discovery in 1927, the Heisenberg Inequalities have become an icon of quantum mechanics. Often inappropriately referred to as the Uncertainty Principle, these inequalities relating the standard deviations of the position and momentum observables to Planck's constant are one of the cornerstones of the quantum formalism even if the physical interpretation of quantum mechanics remains still open to controversy nowadays. The Heisenberg Inequalities governing translational motion are well understood. However, the corresponding inequalities pertaining to rotational motion have not been established so far. To fill this gap, we present here the Rotational Heisenberg Inequalities relating the standard deviations of the orientation axis and orbital angular momentum observables of an isolated molecule. The reason for choosing this system is that a molecule separated from its environment corresponds to a bound system preserving the orbital angular momentum.Comment: 6 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:1412.211

    Schistosomoses

    Get PDF
    corecore