13,926 research outputs found
Spatiospectral concentration on a sphere
We pose and solve the analogue of Slepian's time-frequency concentration
problem on the surface of the unit sphere to determine an orthogonal family of
strictly bandlimited functions that are optimally concentrated within a closed
region of the sphere, or, alternatively, of strictly spacelimited functions
that are optimally concentrated within the spherical harmonic domain. Such a
basis of simultaneously spatially and spectrally concentrated functions should
be a useful data analysis and representation tool in a variety of geophysical
and planetary applications, as well as in medical imaging, computer science,
cosmology and numerical analysis. The spherical Slepian functions can be found
either by solving an algebraic eigenvalue problem in the spectral domain or by
solving a Fredholm integral equation in the spatial domain. The associated
eigenvalues are a measure of the spatiospectral concentration. When the
concentration region is an axisymmetric polar cap the spatiospectral projection
operator commutes with a Sturm-Liouville operator; this enables the
eigenfunctions to be computed extremely accurately and efficiently, even when
their area-bandwidth product, or Shannon number, is large. In the asymptotic
limit of a small concentration region and a large spherical harmonic bandwidth
the spherical concentration problem approaches its planar equivalent, which
exhibits self-similarity when the Shannon number is kept invariant.Comment: 48 pages, 17 figures. Submitted to SIAM Review, August 24th, 200
Fixed parameter tractability of crossing minimization of almost-trees
We investigate exact crossing minimization for graphs that differ from trees
by a small number of additional edges, for several variants of the crossing
minimization problem. In particular, we provide fixed parameter tractable
algorithms for the 1-page book crossing number, the 2-page book crossing
number, and the minimum number of crossed edges in 1-page and 2-page book
drawings.Comment: Graph Drawing 201
A repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism
Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the
most well-characterized phases of correlated Fermi systems. A recent experiment
has reported the first evidence for novel phase behavior on the repulsive side
of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting
recent theoretical studies to the atomic trap geometry, we show that an
adiabatic ferromagnetic transition would take place at a weaker interaction
strength than is observed in experiment. This discrepancy motivates a simple
non-equilibrium theory that takes account of the dynamics of magnetic defects
and three-body losses. The formalism developed displays good quantitative
agreement with experiment.Comment: 4 pages, 2 figure
Do Housing Rehabs Pay Their Way? A National Case Study
This research focuses on if housing rehabilitation by community development corporations pays its own way. The recent experience of ten local housing organizations in the Neighborhood Reinvestment Corporation network is examined. These organizations assist homeowners in rehabbing existing units and acquire, rehab and transfer units to new occupants. The findings indicate that rehabbed housing units provide substantial benefits to the local economy. The rehabbed units return $0.55, on average, for every local government dollar invested. In addition, economic benefits such as increased property values and tax base, and construction jobs and permanent jobs were created and sustained.
Quantum Phase Transitions in Bosonic Heteronuclear Pairing Hamiltonians
We explore the phase diagram of two-component bosons with Feshbach resonant
pairing interactions in an optical lattice. It has been shown in previous work
to exhibit a rich variety of phases and phase transitions, including a
paradigmatic Ising quantum phase transition within the second Mott lobe. We
discuss the evolution of the phase diagram with system parameters and relate
this to the predictions of Landau theory. We extend our exact diagonalization
studies of the one-dimensional bosonic Hamiltonian and confirm additional Ising
critical exponents for the longitudinal and transverse magnetic
susceptibilities within the second Mott lobe. The numerical results for the
ground state energy and transverse magnetization are in good agreement with
exact solutions of the Ising model in the thermodynamic limit. We also provide
details of the low-energy spectrum, as well as density fluctuations and
superfluid fractions in the grand canonical ensemble.Comment: 11 pages, 14 figures. To appear in Phys. Rev.
Feshbach Resonance in Optical Lattices and the Quantum Ising Model
Motivated by experiments on heteronuclear Feshbach resonances in Bose
mixtures, we investigate s-wave pairing of two species of bosons in an optical
lattice. The zero temperature phase diagram supports a rich array of superfluid
and Mott phases and a network of quantum critical points. This topology reveals
an underlying structure that is succinctly captured by a two-component Landau
theory. Within the second Mott lobe we establish a quantum phase transition
described by the paradigmatic longitudinal and transverse field Ising model.
This is confirmed by exact diagonalization of the 1D bosonic Hamiltonian. We
also find this transition in the homonuclear case.Comment: 5 pages, 4 figure
Theory of quantum paraelectrics and the metaelectric transition
We present a microscopic model of the quantum paraelectric-ferroelectric
phase transition with a focus on the influence of coupled fluctuating phonon
modes. These may drive the continuous phase transition first order through a
metaelectric transition and furthermore stimulate the emergence of a textured
phase that preempts the transition. We discuss two further consequences of
fluctuations, firstly for the heat capacity, and secondly we show that the
inverse paraelectric susceptibility displays T^2 quantum critical behavior, and
can also adopt a characteristic minimum with temperature. Finally, we discuss
the observable consequences of our results.Comment: 5 pages, 2 figure
The Stellar Content Near the Galactic Center
High angular resolution J, H, K, and L' images are used to investigate the
stellar content within 6 arcsec of SgrA*. The data, which are complete to K ~
16, are the deepest multicolor observations of the region published to date.Comment: 34 pages, including 12 figure
Itinerant ferromagnetism in an atomic Fermi gas: Influence of population imbalance
We investigate ferromagnetic ordering in an itinerant ultracold atomic Fermi
gas with repulsive interactions and population imbalance. In a spatially
uniform system, we show that at zero temperature the transition to the
itinerant magnetic phase transforms from first to second order with increasing
population imbalance. Drawing on these results, we elucidate the phases present
in a trapped geometry, finding three characteristic types of behavior with
changing population imbalance. Finally, we outline the potential experimental
implications of the findings.Comment: 10 pages, 4 figures, typos added, references adde
- ā¦