888 research outputs found
Perfect coupling of light to surface plasmons with ultra-narrow linewidths
We examine the coupling of electromagnetic waves incident normal to a thin
silver film that forms an oscillatory grating embedded between two otherwise
uniform, semi-infinite half spaces. Two grating structures are considered, in
one of which the mid point of the Ag film remains fixed whereas the thickness
varies sinusoidally, while in the other the mid point oscillates sinusoidally
whereas the film thicknesses remains fixed. On reducing the light wavelength
from the long wavelength limit, we encounter signatures in the transmission, T,
and reflection, R, coefficients associated with: i) the short-range surface
plasmon mode, ii) the long-range surface plasmon mode, and iii) electromagnetic
diffraction tangent to the grating. The first two features can be regarded as
generalized (plasmon) Wood's anomalies whereas the third is the first-order
conventional (electromagnetic) Wood's anomaly. The energy density at the film
surface is enhanced for wavelengths corresponding to these three anomalies,
particularly for the long range plasmon mode in thin films. When exciting the
silver film with a pair of waves incident from opposite directions, we find
that by adjusting the grating oscillation amplitude and fixing the relative
phase of the incoming waves to be even or odd, T+R can be made to vanish for
one or the other of the plasmon modes; this corresponds to perfect coupling
(impedance matching in the language of electrical engineering) between the
incoming light and these modes.Comment: 13 pages, 5 figures. accepted J. Chem. Phy
Wearing Knee Sleeves During Back Squats Does Not Improve Mass Lifted or Affect Knee Biomechanics
Purpose:Knee sleeves have become widely popular in the exercise realm, especially for knee support during back squats. Knee sleeves are successful in providing frontal plane knee support during functional tasks, but have not been investigated in back squats. Knee wraps, a somewhat similar elastic material, provide elastic energy that increases weight lifted during back squats. Thus, it is possible the thick neoprene knee sleeves could prove advantageous for back squats. The purpose of this study was to examine the effects of knee sleeves on weight lifted, knee biomechanics, and muscle activations during back squats.Methods:Fifteen resistance trained men and women performed 1-repetition maximum (1-RM) squats to full depth and 80% 1-RM to full and parallel depths during two separate randomized sessions: with/without knee sleeves. Three-dimensional motion capture, force platforms, and electromyography recorded knee biomechanics and activations of the rectus femoris, vastus medialis, biceps femoris long head, and gluteus maximus during all squats.Results:Maximal weight lifted did not improve when using knee sleeves. Frontal plane knee biomechanics did not differ for 1-RM or submaximal squats to either depth between conditions. Knee external rotation moments during descent were larger with sleeves during submaximal squats. Reduced integrated ascent phase gluteus maximus activations occurred during both 1-RM and submaximal squats with knee sleeves.Conclusions:The results of this study show that wearing knee sleeves does not provide additive effects to weight lifted and do not appear to alter frontal plane mechanics during weighted back squats
Effects of Food Bar Chewing Duration on the Physiologic, Metabolic, and Perceptual Responses to Moderate-Intensity Running
Purpose
Chewing duration can affect food particle size, gastric processing, and postprandial glycemia, but these effects have not been investigated with exercise. This study examined how the chewing duration of a food bar impacts glycemic and metabolic responses, gastrointestinal (GI) symptoms, psychological affect, and performance during endurance running.
Methods
This randomized, unblinded, crossover study had 15 males (35.2 ± 7.4 years, VO2peak: 56.1 ± 5.2 ml/kg/min) attend three laboratory visits. Visit 1 required a VO2peak test, 10 min familiarization run at 60% VO2peak, and familiarization time-to-exhaustion (TTE) test (10 min at 90% VO2peak, followed by TTE at 100% VO2peak). Visits 2 and 3 consisted of a 60 min run at 60% VO2peak, followed by TTE testing. Participants were fed 45 g of a bar (180 kcal, 4 g fat, 33 g carbohydrate, 3 g protein, 1 g fiber) in 9 g servings 30 min before running, and 27 g of bar in 9 g servings at three timepoints during the 60 min run. Participants consumed the servings in 20 (20CHEW) or 40 (40CHEW) masticatory cycles, at 1 chew/second. Outcomes included blood glucose, substrate use, GI symptoms, perceived exertion (RPE), overall feeling, and TTE.
Results
Post-prandial blood glucose, GI symptoms, and RPE increased over time, but there were no significant between-condition or condition-by-time effects. TTE showed no significant between-condition effect (20CHEW: 288 ± 133 s; 40CHEW: 335 ± 299 s; p = 0.240). Overall feeling demonstrated a time-by-condition effect (p = 0.006), suggesting possible better maintenance over time with 40CHEW.
Conclusion
Cumulatively, the results suggest that extended chewing minimally impacts physiology, perceptions, and performance during 60 min moderate-intensity running
Effects of hydrogen on the morphology and electrical properties of GaN grown by plasma-assisted molecular-beam epitaxy
We study the effect of introducing hydrogen gas through the rf-plasma source during plasma-assisted molecular-beam epitaxy of GaN(0001). The well-known smooth-to-rough transition that occurs for this surface as a function of decreasing Ga flux in the absence of H is found to persist even with H present, although the critical Ga flux for this transition increases. Under Ga-rich conditions, the presence of hydrogen is found to induce step bunching (facetting) on the surface. Conductive atomic force microscopy reveals that leakage current through dislocation cores is significantly reduced when hydrogen is present during the growth
A New Mechanism for Generating a Single Transverse Spin Asymmetry
We propose a new mechanism for generating a single transverse spin asymmetry
(STSA) in polarized proton-proton and proton-nucleus collisions in the
high-energy scattering approximation. In this framework the STSA originates
from the q->q G splitting in the projectile (proton) light-cone wave function
followed by a perturbative (C-odd) odderon interaction, together with a C-even
interaction, between the projectile and the target. We show that some aspects
of the obtained expression for the STSA of the produced quarks are in
qualitative agreement with experiment: STSA decreases with decreasing
projectile x_F and is a non-monotonic function of the transverse momentum k_T.
In our framework the STSA peaks at k_T near the saturation scale Q_s. Our
mechanism predicts that the quark STSA in proton-nucleus collisions should be
much smaller than in proton-proton collisions. We also observe that in our
formalism the STSA for prompt photons is zero.Comment: 28 pages, 17 figues; v2: minor corrections, a subsection, discussion
and references added; v3: minor corrections and a new figure added; v4: minor
corrections; v5: minor corrections in figure
The Enhanced Liver Fibrosis test maintains its diagnostic and prognostic performance in alcohol-related liver disease: a cohort study
BACKGROUND: Alcohol is the main cause of chronic liver disease. The Enhanced Liver Fibrosis (ELF) test is a serological biomarker for fibrosis staging in chronic liver disease, however its utility in alcohol-related liver disease warrants further validation. We assessed the diagnostic and prognostic performance of ELF in alcohol-related liver disease. METHODS: Observational cohort study assessing paired ELF and histology from 786 tertiary care patients with chronic liver disease due to alcohol (n = 81) and non-alcohol aetiologies (n = 705). Prognostic data were available for 64 alcohol patients for a median of 6.4 years. Multiple ELF cut-offs were assessed to determine diagnostic utility in moderate fibrosis and cirrhosis. Survival data were assessed to determine the ability of ELF to predict liver related events and all-cause mortality. RESULTS: ELF identified cirrhosis and moderate fibrosis in alcohol-related liver disease independently of aminotransferase levels with areas under receiver operating characteristic curves of 0.895 (95% CI 0.823-0.968) and 0.923 (95% CI 0.866-0.981) respectively, which were non-inferior to non-alcohol aetiologies. The overall performance of ELF was assessed using the Obuchowski method: in alcohol = 0.934 (95% CI 0.908-0.960); non-alcohol = 0.907 (95% CI 0.895-0.919). Using ELF < 9.8 to exclude and ≧ 10.5 to diagnose cirrhosis, 87.7% of alcohol cases could have avoided biopsy, with sensitivity of 91% and specificity of 85%. A one-unit increase in ELF was associated with a 2.6 (95% CI 1.55-4.31, p < 0.001) fold greater odds of cirrhosis at baseline and 2.0-fold greater risk of a liver related event within 6 years (95% CI 1.39-2.99, p < 0.001). CONCLUSIONS: ELF accurately stages liver fibrosis independently of transaminase elevations as a marker of inflammation and has superior prognostic performance to biopsy in alcohol-related liver disease
A biophysical model of prokaryotic diversity in geothermal hot springs
Recent field investigations of photosynthetic bacteria living in geothermal
hot spring environments have revealed surprisingly complex ecosystems, with an
unexpected level of genetic diversity. One case of particular interest involves
the distribution along hot spring thermal gradients of genetically distinct
bacterial strains that differ in their preferred temperatures for reproduction
and photosynthesis. In such systems, a single variable, temperature, defines
the relevant environmental variation. In spite of this, each region along the
thermal gradient exhibits multiple strains of photosynthetic bacteria adapted
to several distinct thermal optima, rather than the expected single thermal
strain adapted to the local environmental temperature. Here we analyze
microbiology data from several ecological studies to show that the thermal
distribution field data exhibit several universal features independent of
location and specific bacterial strain. These include the distribution of
optimal temperatures of different thermal strains and the functional dependence
of the net population density on temperature. Further, we present a simple
population dynamics model of these systems that is highly constrained by
biophysical data and by physical features of the environment. This model can
explain in detail the observed diversity of different strains of the
photosynthetic bacteria. It also reproduces the observed thermal population
distributions, as well as certain features of population dynamics observed in
laboratory studies of the same organisms
- …