9,632 research outputs found

    Explaining the wage gap: Heckscher-Ohlin, economic geography and services availability

    Get PDF
    In the debate on globalisation and wage inequality Heckscher-Ohlin, economic geography and services availability theory has featured prominently. However, a neglected mechanism by which globalisation affects labour market outcomes is through the in-creased tradability of producer services. By integrating elements of Heck-scher- Ohlin theory, the economic geography literature and the literature on producer services linkages, we show that the impact of globalisation on the relative wages is a sophisticated combination of the effects that play a key-role in these models. The most important result we find is that the fall in transportation costs of producer services might indeed have caused the sharp increase in wage inequality. (JEL F1, R1)

    Resistance effects due to magnetic guiding orbits

    Full text link
    The Hall and magnetoresistance of a two dimensional electron gas subjected to a magnetic field barrier parallel to the current direction is studied as function of the applied perpendicular magnetic field. The recent experimental results of Nogaret {\em et al.} [Phys. Rev. Lett. {\bf 84}, 2231 (2000)] for the magneto- and Hall resistance are explained using a semi-classical theory based on the Landauer-B\"{u}ttiker formula. The observed positive magnetoresistance peak is explained as due to a competition between a decrease of the number of conducting channels as a result of the growing magnetic field, from the fringe field of the ferromagnetic stripe as it becomes magnetized, and the disappearance of snake orbits and the subsequent appearance of cycloidlike orbits.Comment: 7 pages, 7 figure

    Ginzburg-Landau theory and effects of pressure on a two-band superconductor : application to MgB2

    Full text link
    We present a model of pressure effects of a two-band superconductor based on a Ginzburg-Landau free energy with two order parameters. The parameters of the theory are pressure as well as temperature dependent. New pressure effects emerge as a result of the competition between the two bands. The theory then is applied to MgB2. We identify two possible scenaria regarding the fate of the two σ\sigma subbands under pressure, depending on whether or not both subbands are above the Fermi energy at ambient pressure. The splitting of the two subbands is probably caused by the E2g distortion. If only one subband is above the Fermi energy at ambient pressure (scenario I), application of pressure diminishes the splitting and it is possible that the lower subband participates in the superconductivity. The corresponding crossover pressure and Gruneisen parameter are estimated. In the second scenario both bands start above the Fermi energy and they move below it, either by pressure or via the substitution of Mg by Al. In both scenaria, the possibility of electronical topological transition is emphasized. Experimental signatures of both scenaria are presented and existing experiments are discussed in the light of the different physical pictures.Comment: 6 pages; supersedes the first part of cond-mat/0204085 due to new experiment

    Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas

    Full text link
    The quasi-bound and scattered states in a 2DEG subjected to a circular symmetric steplike magnetic profile with zero average magnetic field are studied. We calculate the effect of a random distribution of such identical profiles on the transport properties of a 2DEG. We show that a nonzero Hall resistance can be obtained, although =0=0, and that in some cases it can even change sign as function of the Fermi energy or the magnetic field strength. The Hall and magnetoresistance show pronounced resonances apart from the Landau states of the inner core, corresponding to the so-called quasi-bound snake orbit states.Comment: 7 pages, 8 figure

    Quantum states in a magnetic anti-dot

    Full text link
    We study a new system in which electrons in two dimensions are confined by a non homogeneous magnetic field. The system consists of a heterostructure with on top of it a superconducting disk. We show that in this system electrons can be confined into a dot region. This magnetic anti-dot has the interesting property that the filling of the dot is a discrete function of the magnetic field. The circulating electron current inside and outside the anti-dot can be in opposite direction for certain bound states. And those states exhibit a diamagnetic to paramagnetic transition with increasing magnetic field. The absorption spectrum consists of many peaks, some of which violate Kohn's theorem, and which is due to the coupling of the center of mass motion with the other degrees of freedom.Comment: 6 pages, 12 ps figure

    Saddle point states and energy barriers for vortex entrance and exit in superconducting disks and rings

    Full text link
    The transitions between the different vortex states of thin mesoscopic superconducting disks and rings are studied using the non-linear Ginzburg-Landau functional. They are saddle points of the free energy representing the energy barrier which has to be overcome for transition between the different vortex states. In small superconducting disks and rings the saddle point state between two giant vortex states, and in larger systems the saddle point state between a multivortex state and a giant vortex state and between two multivortex states is obtained. The shape and the height of the nucleation barrier is investigated for different disk and ring configurations.Comment: 10 pages, 18 figure

    Exciton trapping in magnetic wire structures

    Full text link
    The lateral magnetic confinement of quasi two-dimensional excitons into wire like structures is studied. Spin effects are take into account and two different magnetic field profiles are considered, which experimentally can be created by the deposition of a ferromagnetic stripe on a semiconductor quantum well with magnetization parallel or perpendicular to the grown direction of the well. We find that it is possible to confine excitons into one-dimensional (1D) traps. We show that the dependence of the confinement energy on the exciton wave vector, which is related to its free direction of motion along the wire direction, is very small. Through the application of a background magnetic field it is possible to move the position of the trapping region towards the edge of the ferromagnetic stripe or even underneath the stripe. The exact position of this 1D exciton channel depends on the strength of the background magnetic field and on the magnetic polarisation direction of the ferromagnetic film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte

    Confined magnetic guiding orbit states

    Full text link
    We show how snake-orbit states which run along a magnetic edge can be confined electrically. We consider a two-dimensional electron gas (2DEG) confined into a quantum wire, subjected to a strong perpendicular and steplike magnetic field B/−BB/-B. Close to this magnetic step new, spatially confined bound states arise as a result of the lateral confinement and the magnetic field step. The number of states, with energy below the first Landau level, increases as BB becomes stronger or as the wire width becomes larger. These bound states can be understood as an interference between two counter-propagating one-dimensional snake-orbit states.Comment: 4 pages, 4 figure

    Confinement of two-dimensional excitons in a non-homogeneous magnetic field

    Full text link
    The effective Hamiltonian describing the motion of an exciton in an external non-homogeneous magnetic field is derived. The magnetic field plays the role of an effective potential for the exciton motion, results into an increment of the exciton mass and modifies the exciton kinetic energy operator. In contrast to the homogeneous field case, the exciton in a non-homogeneous magnetic field can also be trapped in the low field region and the field gradient increases the exciton confinement. The trapping energy and wave function of the exciton in a GaAs two-dimensional electron gas for specific circular magnetic field configurations are calculated. The results show than excitons can be trapped by non-homogeneous magnetic fields, and that the trapping energy is strongly correlated with the shape and strength of the non-homogeneous magnetic field profile.Comment: 9 pages, 12 figure

    Scattering of Dirac electrons by circular mass barriers: valley filter and resonant scattering

    Full text link
    The scattering of two-dimensional (2D) massless Dirac electrons is investigated in the presence of a random array of circular mass barriers. The inverse momentum relaxation time and the Hall factor are calculated and used to obtain parallel and perpendicular resistivity components within linear transport theory. We found a non zero perpendicular resistivity component which has opposite sign for electrons in the different K and K' valleys. This property can be used for valley filter purposes. The total cross-section for scattering on penetrable barriers exhibit resonances due to the presence of quasi-bound states in the barriers that show up as sharp gaps in the cross-section while for Schr\"{o}dinger electrons they appear as peaks.Comment: 10 pages, 11 figure
    • 

    corecore