1,006 research outputs found

    The Nature of Radio Emission from Distant Galaxies: The 1.4 GHz Observations

    Get PDF
    We have conducted a deep radio survey with the Very Large Array at 1.4 GHz of a region containing the Hubble Deep Field. This survey overlaps previous observations at 8.5 GHz allowing us to investigate the radio spectral properties of microjansky sources to flux densities greater than 40 ÎŒ\muJy at 1.4 GHz and greater than 8 ÎŒ\muJy at 8.5 GHz. A total of 371 sources have been catalogued at 1.4 GHz as part of a complete sample within 20\arcmin ~of the HDF. The differential source count for this region is only marginally sub-Euclidean and is given by n(S)=(8.3±0.4)S−2.4±0.1n(S) = (8.3 \pm 0.4) S^{-2.4 \pm 0.1} sr−1^{-1}Jy−1^{-1}. Above about 100 ÎŒ\muJy the radio source count is systematically lower in the HDF as compared to other fields. We conclude that there is clustering in our radio sample on size scales of 1\arcmin - 40\arcmin \. The 1.4 GHz selected sample shows that the radio spectral indices are preferentially steep (αˉ1.4=0.85\bar{\alpha}_{1.4} = 0.85 ) and the sources are moderately extended with average angular size Ξ\theta = 1.8\arcsec . Optical identification with disk-type systems at z∌z \sim 0.5-0.8 suggests that synchrotron emission, produced by supernovae remnants, is powering the radio emission in the majority of sources. The 8.5 GHz sample contains primarily moderately flat spectrum sources (αˉ8.5=0.35\bar{\alpha}_{8.5} = 0.35), with less than 15% inverted. We argue that we may be observing an increased fraction of optically thin bremsstrahlung over synchrotron radiation in these distant star-forming galaxies.Comment: 31 pages, 5 tables, 10 figures, to appear in Jan. 2000 Ap

    The Radial Extent and Warp of the Ionized Galactic Disk. II. A Likelihood Analysis of Radio-Wave Scattering Toward the Anticenter

    Full text link
    We use radio-wave scattering data to constrain the distribution of ionized gas in the outer Galaxy. Like previous models, our model for the H II disk includes parameters for the radial scale length and scale height of the H II, but we allow the H II disk to warp and flare. Our model also includes the Perseus arm. We use a likelihood analysis on 11 extragalactic sources and 7 pulsars. Scattering in the Perseus arm is no more than 60% of the level contributed by spiral arms in the inner Galaxy, equivalent to a 1 GHz scattering diameter of 1.5 mas. Our analysis favors an unwarped, nonflaring disk with a 1 kpc scale height, though this may reflect the non-uniform and coarse coverage provided by the available data. The lack of a warp indicates that VLBI observations near 1 GHz with an orbiting station having baseline lengths of a few Earth diameters will not be affected by interstellar scattering at Galactic latitudes |b| ~ 15 degrees. The radial scale length is 15--20 kpc, but the data cannot distinguish between a gradual decrease in the electron density and a truncated distribution. We favor a truncated one, because we associate the scattering with massive star formation, which is also truncated near 20 kpc. The distribution of electron density turbulence decreases more rapidly with Galactocentric distance than does the hydrogen distribution. Alternate ionizing and turbulent agents---the intergalactic ionizing flux and satellite galaxies passing through the disk---do not contribute significantly to scattering. We cannot exclude the possibility that a largely ionized, but quiescent disk extends to >~ 100 kpc, similar to that for some Ly-alpha absorbers.Comment: 34 pages, LaTeX2e with AASTeX aaspp4 macro, 9 figures in 9 PostScript files, accepted for publication in Ap

    The VLA Survey of the Chandra Deep Field South: I. Overview of the Radio Data

    Full text link
    We report 20 and 6 cm VLA deep observations of the CDF-S including the Extended CDF-S. We discuss the radio properties of 266 cataloged radio sources, of which 198 are above a 20 cm completeness level reaching down to 43 microJy at the center of the field. Survey observations made at 6 cm over a more limited region covers the original CDF-S to a comparable level of sensitivity as the 20 cm observations. Of 266 cataloged radio sources, 52 have X-ray counterparts in the CDF-S and a further 37 in the E-CDF-S area not covered by the 1 Megasecond exposure. Using a wide range of material, we have found optical or infrared counterparts for 254 radio sources, of which 186 have either spectroscopic or photometric redshifts (Paper II). Three radio sources have no apparent counterpart at any other wavelength. Measurements of the 20 cm radio flux density at the position of each CDF-S X-ray source detected a further 30 radio sources above a conservative 3-sigma detection limit. X-ray and sub-mm observations have been traditionally used as a measure of AGN and star formation activity, respectively. These new observations probe the faint end of both the star formation and radio galaxy/AGN population, as well as the connection between the formation and evolution of stars and SMBHs. Both of the corresponding gravitational and nuclear fusion driven energy sources can lead to radio synchrotron emission. AGN and radio galaxies dominate at high flux densities. Although emission from star formation becomes more prominent at the microjansky levels reached by deep radio surveys, even for the weakest sources, we still find an apparent significant contribution from low luminosity AGN as well as from star formation.Comment: Accpted for publication in the Astrophysical Journal supplements with 3 tables and 18 figure

    Evolution of Structure in the Intergalactic Medium and the Nature of the Ly-alpha Forest

    Full text link
    We have performed a detailed statistical study of the evolution of structure in a photoionized intergalactic medium (IGM) using analytical simulations to extend the calculation into the mildly non-linear density regime found to prevail at z = 3. Our work is based on a simple fundamental conjecture: that the probability distribution function of the density of baryonic diffuse matter in the universe is described by a lognormal (LN) random field. The LN field has several attractive features and follows plausibly from the assumption of initial linear Gaussian density and velocity fluctuations at arbitrarily early times. Starting with a suitably normalized power spectrum of primordial fluc- tuations in a universe dominated by cold dark matter (CDM), we compute the behavior of the baryonic matter, which moves slowly toward minima in the dark matter potential on scales larger than the Jeans length. We have computed two models that succeed in matching observations. One is a non-standard CDM model with Omega=1, h=0.5 and \Gamma=0.3, and the other is a low density flat model with a cosmological constant(LCDM), with Omega=0.4, Omega_Lambda=0.6 and h=.65. In both models, the variance of the density distribution function grows with time, reaching unity at about z=4, where the simulation yields spectra that closely resemble the Ly-alpha forest absorption seen in the spectra of high z quasars. The calculations also successfully predict the observed properties of the Ly-alpha forest clouds and their evolution from z=4 down to at least z=2, assuming a constant intensity for the metagalactic UV background over this redshift range. However, in our model the forest is not due to discrete clouds, but rather to fluctuations in a continuous intergalactic medium. (This is an abreviated abstract; the complete abstract is included with the manuscript.)Comment: Wrong Fig. 10 is corrected. Our custom made postscript is available at ftp://hut4.pha.jhu.edu/incoming/igm, or contact Arthur Davidsen ([email protected]) for nice hardcopies; accepted for publication in Ap

    Computerized cyclic voltammetric detection after HPLC of the antineoplastic agents etoposide, teniposide, adriamycin and its metabolite adriamycinol in urine samples

    Get PDF
    A computerized electrochemical detection system for application after HPLC, provided with a cyclic voltammetric oxidative and reductive module, is described for the on-line qualitative determination of electroactive antineoplastic agents and metabolites in urine samples, collected from cancer patients, following intravenous administration

    Panoramic Views of the Cygnus Loop

    Get PDF
    We present a complete atlas of the Cygnus Loop supernova remnant in the light of [O III] (5007), H alpha, and [S II] (6717, 6731). Despite its shell-like appearance, the Cygnus Loop is not a current example of a Sedov-Taylor blast wave. Rather, the optical emission traces interactions of the supernova blast wave with clumps of gas. The surrounding interstellar medium forms the walls of a cavity through which the blast wave now propagates, including a nearly complete shell in which non-radiative filaments are detected. The Cygnus Loop blast wave is not breaking out of a dense cloud, but is instead running into confining walls. The interstellar medium dominates not only the appearance of the Cygnus Loop but also the continued evolution of the blast wave. If this is a typical example of a supernova remnant, then global models of the interstellar medium must account for such significant blast wave deceleration.Comment: 28 pages AAS Latex, 28 black+white figures, 6 color figures. To be published in The Astrophysical Journal Supplement Serie

    High-Latitude HI in the Low Surface Brightness Galaxy UGC7321

    Full text link
    From the analysis of sensitive HI 21-cm line observations, we find evidence for vertically extended HI emission (|z|<~2.4 kpc) in the edge-on, low surface brightness spiral galaxy UGC7321. Three-dimensional modelling suggests that the HI disk of UGC7321 is both warped and flared, but that neither effect can fully reproduce the spatial distribution and kinematics of the highest z-height gas. We are able to model the high-latitude emission as an additional HI component in the form of a ``thick disk'' or ``halo'' with a FWHM~3.3 kpc. We find tentative evidence that the vertically extended gas declines in rotational velocity as a function of z, although we are unable to completely rule out models with constant V(z). In spite of the low star formation rate of UGC7321, energy from supernovae may be sufficient to sustain this high-latitude gas. However, alternative origins for this material, such as slow, sustained infall, cannot yet be excluded.Comment: to appear in the August 20 Astrophysical Journal; 17 pages; version with full resolution figures available at http://cfa-www.harvard.edu/~lmatthew

    Relaxation to thermal equilibrium in the self-gravitating sheet model

    Full text link
    We revisit the issue of relaxation to thermal equilibrium in the so-called "sheet model", i.e., particles in one dimension interacting by attractive forces independent of their separation. We show that this relaxation may be very clearly detected and characterized by following the evolution of order parameters defined by appropriately normalized moments of the phase space distribution which probe its entanglement in space and velocity coordinates. For a class of quasi-stationary states which result from the violent relaxation of rectangular waterbag initial conditions, characterized by their virial ratio R_0, we show that relaxation occurs on a time scale which (i) scales approximately linearly in the particle number N, and (ii) shows also a strong dependence on R_0, with quasi-stationary states from colder initial conditions relaxing much more rapidly. The temporal evolution of the order parameter may be well described by a stretched exponential function. We study finally the correlation of the relaxation times with the amplitude of fluctuations in the relaxing quasi-stationary states, as well as the relation between temporal and ensemble averages.Comment: 37 pages, 24 figures; some additional discussion of previous literature and other minor modifications, final published versio

    A Catalogue of Field Horizontal Branch Stars Aligned with High Velocity Clouds

    Full text link
    We present a catalogue of 430 Field Horizontal Branch (FHB) stars, selected from the Hamburg/ESO Survey (HES), which fortuitously align with high column density neutral hydrogen (HI) High-Velocity Cloud (HVC) gas. These stars are ideal candidates for absorption-line studies of HVCs, attempts at which have been made for almost 40 years with little success. A parent sample of 8321 HES FHB stars was used to extract HI spectra along each line-of-sight, using the HI Parkes All-Sky Survey. All lines-of-sight aligned with high velocity HI emission with peak brightness temperatures greater than 120mK were examined. The HI spectra of these 430 probes were visually screened and cross-referenced with several HVC catalogues. In a forthcoming paper, we report on the results of high-resolution spectroscopic observations of a sample of stars drawn from this catalogue.Comment: 7 pages, 4 figures. ApJS accepted. Full catalogue and all online-only images available at http://astronomy.swin.edu.au/staff/cthom/catalogue/index.htm

    Hierarchical clustering and formation of power-law correlation in 1-dimensional self-gravitating system

    Get PDF
    The process of formation of fractal structure in one-dimensional self-gravitating system is examined numerically. It is clarified that structures created in small spatial scale grow up to larger scale through clustering of clusters, and form power-law correlation.Comment: 9pages,4figure
    • 

    corecore