1,044 research outputs found

    pulsar_spectra: A pulsar flux density catalogue and spectrum fitting repository

    Full text link
    We present the pulsar_spectra software repository, an open-source pulsar flux density catalogue and automated spectral fitting software that finds the best spectral model and produces publication-quality plots. The Python-based software includes features that enable users in the astronomical community to add newly published spectral measurements to the catalogue as they become available. The spectral fitting software is an implementation of the method described in Jankowski et al. (2018) which uses robust statistical methods to decide on the best-fitting model for individual pulsar spectra. pulsar_spectra is motivated by the need for a centralised repository for pulsar flux density measurements to make published measurements more accessible to the astronomical community and provide a suite of tools for measuring spectra

    The Efficacy of \u3cem\u3ein vitro Synergistes jonesii\u3c/em\u3e Inoculum in Preventing DHP Toxicity in Steers Fed Leucaena-Grass Diets

    Get PDF
    Leucaena leucocephala (leucaena) is a valuable forage tree legume for tropical animal production that contains the toxin mimosine. The breakdown products of mimosine in ruminants (3,4-DHP and 2,3-DHP) can adversely affect their health and limit weight gains (Jones and Hegarty 1984). The rumen bacterium Synergistes jonesii, introduced into Australia in 1983 was shown to completely and rapidly degrade these toxins to safe levels (Jones and Megarrity 1986). Since 1996, an in vitro produced inoculum has been made commercially available to Australian graziers (Klieve et al. 2002). Accordingly, the issue of leucaena toxicity in Australia was thought to be resolved. However, extensive testing in 2004 found that up to 50% of Queensland cattle herds consuming leucaena were excreting high levels of urinary DHP suggesting sub-clinical toxicity remained an issue for graziers (Dalzell et al. 2012). Some of these herds had previously been inoculated with in vitro S. jonesii suggesting the inoculum may not be able to either persist within a herd, or remain effective in degrading DHP. The aim of this study was to assess the capability of the in vitro S. jonesii inoculum to efficiently break down DHP in a controlled feeding trial environment

    Burrowing Behavior of a Deposit Feeding Bivalve Predicts Change in Intertidal Ecosystem State

    Get PDF
    Behavior has a predictive power that is often underutilized as a tool for signaling ecological change. The burrowing behavior of the deposit feeding bivalve Macoma balthica reflects a typical food-safety trade-off. The choice to live close to the sediment surface comes at a risk of predation and is a decision made when predation danger, food intake rates or future fitness prospects are low. In parts of the Dutch Wadden Sea, Macoma populations declined by 90% in the late 1990s, in parallel with large-scale mechanical cockle-dredging activities. During this decline, the burrowing depth of Macoma became shallow and was correlated with the population decline in the following year, indicating that it forecasted population change. Recently, there has been a series of large recruitment events in Macoma. According to the food-safety trade-off, we expected that Macoma should now live deeper, and have a higher body condition. Indeed, we observed that Macoma now lives deeper and that living depth in a given year forecasted population growth in the next year, especially in individuals larger than 14 mm. As living depth and body condition were strongly correlated in individuals larger than 14 mm, larger Macoma could be living deeper to protect their reproductive assets. Our results confirmed that burrowing depth signals impending population change and, together with body condition, can provide an early warning signal of ecological change. We suggest that population recovery is being driven by improved intertidal habitat quality in the Dutch Wadden Sea, rather than by the proposed climate-change related effects. This shift in ecosystem state is suggested to include the recovery of diatom habitat in the top layer of the sediment after cockle-dredging ended

    Direct replacement of oral sodium benzoate with glycerol phenylbutyrate in children with urea cycle disorders

    Get PDF
    Long-term management of urea cycle disorders (UCDs) often involves unlicensed oral sodium benzoate (NaBz) which has a high volume and unpleasant taste. A more palatable treatment is licenced and available (glycerol phenylbutyrate [GPB], Ravicti) but guidance on how to transition patients from NaBz is lacking. A retrospective analysis of clinical and biochemical data was performed for eight children who transitioned from treatment with a single ammonia scavenger, NaBz, to GPB at a single metabolic centre; UCDs included arginosuccinic aciduria (ASA) (n = 5), citrullinaemia type 1 (n = 2) and carbamoyl phosphate synthetase I deficiency (CPS1) (n = 1). Patients transitioned either by gradual transition over 1–2 weeks (n = 3) or direct replacement of NaBz with GPB (n = 5). Median initial dose of GPB was 8.5 mL/m2/day based on published product information; doses were revisited subsequently in clinic and titrated individually (range 4.5–11 mL/m2/day). Pre-transition and post-transition mean ammonia levels were 37 μmol/L (SD 28 μmol/L) and 29 μmol/L (SD 22 μmol/L), respectively (p = 0.09), and mean glutamine levels were 664 μmol/L (SD 225 μmol/L) and 598 μmol/L (SD 185 μmol/L), respectively (p = 0.24). There were no reductions in levels of branched chain amino acids. No related adverse drug reactions were reported. Patients preferred GPB because of its lower volume and greater palatability. Direct replacement of NaBz with GPB maintained metabolic control and was simple for the health service and patients to manage. A more cautious approach with additional monitoring would be warranted in brittle patients and patients whose ammonia levels are difficult to control

    SAFEGUARDS AND NONPROLIFERATION CONSIDERATIONS RELEVANT TO FUELS REFABRICATION AND DEVELOPMENT PROGRAM

    Full text link
    Early in the Fuels Refabrication and Development (FRAD) program, it was recognized that safeguards and nonproliferation design criteria were needed to provide guidance to equipment, process, and facility designers. This need was highlighted by the recent attention given safeguards and proliferation. Because of this heightened concern, it was found that design criteria that adequately address safeguards and nonproliferation do not now exist. For this reason, a three-day workshop was convened to attempt to collect and organize existing information regarding design criteria. This document is a result of that undertaking and the subsequent efforts required to structure the information. In summary, it was found that domestic and international goals and objectives are reasonably well established. Goals and objectives for evaluating the proliferation resistance of a facility are less firmly defined. A listing of design criteria for domestic and international safeguards has not been compiled. This document presents a summary of considerations that must be incorporated into design criteria but stops short of developing a comprehensive list of design criteria. One is certainly needed and should be funded as a follow-on effort. Following the development of the design criteria, the next logical steps are the development of evaluation methodologies and acceptance criteria. These also were proposed as logical follow-on activities which would be needed before a major FRAD design activity could be initiated

    MWA Tied-Array Processing IV: A Multi-Pixel Beamformer for Pulsar Surveys and Ionospheric Corrected Localisation

    Full text link
    The Murchison Widefield Array (MWA) is a low-frequency aperture array capable of high-time and frequency resolution astronomy applications such as pulsar studies. The large field-of-view of the MWA (hundreds of square degrees) can also be exploited to attain fast survey speeds for all-sky pulsar search applications, but to maximise sensitivity requires forming thousands of tied-array beams from each voltage-capture observation. The necessity of using calibration solutions that are separated from the target observation both temporally and spatially makes pulsar observations vulnerable to uncorrected, frequency-dependent positional offsets due to the ionosphere. These offsets may be large enough to move the source away from the centre of the tied-array beam, incurring sensitivity drops of \sim30-50\% in Phase II extended array configuration. We analyse these offsets in pulsar observations and develop a method for mitigating them, improving both the source position accuracy and the sensitivity. This analysis prompted the development of a multi-pixel beamforming functionality that can generate dozens of tied-array beams simultaneously, which runs a factor of ten times faster compared to the original single-pixel version. This enhancement makes it feasible to observe multiple pulsars within the vast field of view of the MWA and supports the ongoing large-scale pulsar survey efforts with the MWA. We explore the extent to which ionospheric offset correction will be necessary for the MWA Phase III and the low-frequency Square Kilometre Array (SKA-Low).Comment: 10 pages, 5 figure
    corecore