776 research outputs found
The rad18 Gene of Schizosaccharomyces pombe Defines a New Subgroup of the SMC Superfamily Involved in DNA Repair
The rad18 mutant of Schizosaccharomyces pombe is very sensitive to killing by both UV and ¿ radiation. We have cloned and sequenced the rad18 gene and isolated and sequenced its homolog from Saccharomyces cerevisiae, designated RHC18. The predicted Rad18 protein has all the structural properties characteristic of the SMC family of proteins, suggesting a motor function- the first implicated in DNA repair. Gene deletion shows that both rad18 and RHC18 are essential for proliferation. Genetic and biochemical analyses suggest that the product of the rad18 gene acts in a DNA repair pathway for removal of UV-induced DNA damage that is distinct from classical nucleotide excision repair. This second repair pathway involves the products of the rhp51 gene (the homolog of the RAD51 gene of S. cerevisiae) and the rad2 gene
Editorial: The History and Evolution of the Journal of Sorority and Fraternity Life Research and Practice
Individuals involved in the founding of the Oracle: The Research Journal of the Association of Fraternity/Sorority Advisors (Oracle), former Oracle editors and Adam M. McCready, Editor of Journal of Sorority and Fraternity Life Research and Practice share the history and evolution of the journal over the past two decades
Multiradar observations of the polar tongue of ionization
[1] We present a global view of large‐scale ionospheric disturbances during the main phase of a major geomagnetic storm. We find that the low‐latitude, auroral, and polar latitude regions are coupled by processes that redistribute thermal plasma throughout the system. For the large geomagnetic storm on 20 November 2003, we examine data from the high‐latitude incoherent scatter radars at Millstone Hill, Sondrestrom, and EISCAT Tromso, with SuperDARN HF radar observations of the high‐latitude convection pattern and DMSP observations of in situ plasma parameters in the topside ionosphere. We combine these with north polar maps of stormtime plumes of enhanced total electron content (TEC) derived from a network of GPS receivers. The polar tongue of ionization (TOI) is seen to be a continuous stream of dense cold plasma entrained in the global convection pattern. The dayside source of the TOI is the plume of storm enhanced density (SED) transported from low latitudes in the postnoon sector by the subauroral disturbance electric field. Convection carries this material through the dayside cusp and across the polar cap to the nightside where the auroral F region is significantly enhanced by the SED material. The three incoherent scatter radars provided full altitude profiles of plasma density, temperatures, and vertical velocity as the TOI plume crossed their different positions, under the cusp, in the center of the polar cap, and at the midnight oval/polar cap boundary. Greatly elevated F peak density (>1.5E12 m[superscript −3]) and low electron and ion temperatures (∼2500 K at the F peak altitude) characterize the SED/TOI plasma observed at all points along its high‐latitude trajectory. For this event, SED/TOI F region TEC (150–1000 km) was ∼50 TECu both in the cusp and in the center of the polar cap. Large, upward directed fluxes of O+ (>1.E14 m[superscript −2] s[superscript −1]) were observed in the topside ionosphere from the SED/TOI plume within the cusp
Mapping genomic and transcriptomic alterations spatially in epithelial cells adjacent to human breast carcinoma.
Almost all genomic studies of breast cancer have focused on well-established tumours because it is technically challenging to study the earliest mutational events occurring in human breast epithelial cells. To address this we created a unique dataset of epithelial samples ductoscopically obtained from ducts leading to breast carcinomas and matched samples from ducts on the opposite side of the nipple. Here, we demonstrate that perturbations in mRNA abundance, with increasing proximity to tumour, cannot be explained by copy number aberrations. Rather, we find a possibility of field cancerization surrounding the primary tumour by constructing a classifier that evaluates where epithelial samples were obtained relative to a tumour (cross-validated micro-averaged AUC = 0.74). We implement a spectral co-clustering algorithm to define biclusters. Relating to over-represented bicluster pathways, we further validate two genes with tissue microarrays and in vitro experiments. We highlight evidence suggesting that bicluster perturbation occurs early in tumour development
The 74MHz System on the Very Large Array
The Naval Research Laboratory and the National Radio Astronomy Observatory
completed implementation of a low frequency capability on the VLA at 73.8 MHz
in 1998. This frequency band offers unprecedented sensitivity (~25 mJy/beam)
and resolution (~25 arcsec) for low-frequency observations. We review the
hardware, the calibration and imaging strategies, comparing them to those at
higher frequencies, including aspects of interference excision and wide-field
imaging. Ionospheric phase fluctuations pose the major difficulty in
calibrating the array. Over restricted fields of view or at times of extremely
quiescent ionospheric ``weather'', an angle-invariant calibration strategy can
be used. In this approach a single phase correction is devised for each
antenna, typically via self-calibration. Over larger fields of view or at times
of more normal ionospheric ``weather'' when the ionospheric isoplanatic patch
size is smaller than the field of view, we adopt a field-based strategy in
which the phase correction depends upon location within the field of view. This
second calibration strategy was implemented by modeling the ionosphere above
the array using Zernike polynomials. Images of 3C sources of moderate strength
are provided as examples of routine, angle-invariant calibration and imaging.
Flux density measurements indicate that the 74 MHz flux scale at the VLA is
stable to a few percent, and tied to the Baars et al. value of Cygnus A at the
5 percent level. We also present an example of a wide-field image, devoid of
bright objects and containing hundreds of weaker sources, constructed from the
field-based calibration. We close with a summary of lessons the 74 MHz system
offers as a model for new and developing low-frequency telescopes. (Abridged)Comment: 73 pages, 46 jpeg figures, to appear in ApJ
High activity Rhenium-186 HEDP with autologous peripheral blood stem cell rescue: a phase I study in progressive hormone refractory prostate cancer metastatic to bone
We tested the feasibility and toxicity of high activities Rhenium-186 hydroxyethylidene diphosphonate, with peripheral blood stem cell rescue in patients with progressive hormone refractory prostate cancer metastatic to bone. Twenty-five patients received between 2500 and 5000 MBq of Rhenium-186 hydroxyethylidene diphosphonate followed 14 days later by the return of peripheral blood peripheral blood stem cells. Activity limiting toxicity was defined as grade III haematological toxicity, lasting at least 7 days, or grade IV haematological toxicity of any duration or any serious unexpected toxicity. Activity limiting toxicity occurred in two of six who received activities of 5000 MBq and maximum tolerated activity was defined at this activity level. Prostate specific antigen reductions of 50% or more lasting at least 4 weeks were seen in five of the 25 patients (20%) all of whom received more than 3500 MBq of Rhenium-186 hydroxyethylidene diphosphonate. The actuarial survival at 1 year is 54%. Administered activities of 5000 MBq of Rhenium-186 hydroxyethylidene diphosphonate are feasible using autologous peripheral blood peripheral blood stem cell rescue in patients with progressive hormone refractory prostate cancer metastatic to bone. The main toxicity is thrombocytopaenia, which is short lasting. A statistically significant activity/prostate specific antigen response was seen. We have now commenced a Phase II trial to further evaluate response rates
OCTANE (ontario-wide cancer targeted nucleic acid evaluation): A platform for intraprovincial, national, and international clinical data-sharing
Cancer is a genetic disease resulting from germline or somatic genetic aberrations. Rapid progress in the field of genomics in recent years is allowing for increased characterization and understanding of the various forms of the disease. The Ontario-wide Cancer Targeted Nucleic Acid Evaluation (octane) clinical trial, open at cancer centres across Ontario, aims to increase access to genomic sequencing of tumours and to facilitate the collection of clinical data related to enrolled patients and their clinical outcomes. The study is designed to assess the clinical utility of next-generation sequencing (ngs) in cancer patient care, including enhancement of treatment options available to patients. A core aim of the study is to encourage collaboration between cancer hospitals within Ontario while also increasing international collaboration in terms of sharing the newly generated data. The single-payer provincial health care system in Ontario provides a unique opportunity to develop a province-wide registry of ngs testing and a repository of genomically characterized, clinically annotated samples. It also provides an important opportunity to use province-wide real-world data to evaluate outcomes and the cost of ngs for patients with advanced cancer. The octane study is attempting to translate knowledge to help deliver precision oncology in a Canadian environment. In this article, we discuss the background to the study and its implementation, current status, and future directions
- …