29,027 research outputs found

    Generalized Background-Field Method

    Full text link
    The graphical method discussed previously can be used to create new gauges not reachable by the path-integral formalism. By this means a new gauge is designed for more efficient two-loop QCD calculations. It is related to but simpler than the ordinary background-field gauge, in that even the triple-gluon vertices for internal lines contain only four terms, not the usual six. This reduction simplifies the calculation inspite of the necessity to include other vertices for compensation. Like the ordinary background-field gauge, this generalized background-field gauge also preserves gauge invariance of the external particles. As a check of the result and an illustration for the reduction in labour, an explicit calculation of the two-loop QCD β\beta-function is carried out in this new gauge. It results in a saving of 45% of computation compared to the ordinary background-field gauge.Comment: 17 pages, Latex, 18 figures in Postscrip

    Anesthesia Case of the Month

    Get PDF

    Gradient Echo Quantum Memory for Light using Two-level Atoms

    Full text link
    We propose a quantum memory for light that is analogous to the NMR gradient echo. Our proposal is ideally perfectly efficient and provides simplifications to current 3-level quantum memory schemes based on controlled inhomogeneous broadening. Our scheme does not require auxiliary light fields. Instead the input optical pulse interacts only with two-level atoms that have linearly increasing Stark shifts. By simply reversing the sign of the atomic Stark shifts, the pulse is retrieved in the forward direction. We present analytical, numerical and experimental results of this scheme. We report experimental efficiencies of up to 15% and suggest simple realizable improvements to significantly increase the efficiency.Comment: 4 pages, 4 figure

    Surgical treatment of a paraspinal abscess with osteomyelitis and spinal cord compression in a rabbit

    Get PDF

    Strong practical stability based robust stabilization of uncertain discrete linear repetitive processes

    No full text
    Repetitive processes are a distinct class of 2D systems of both theoretical and practical interest whose dynamics evolve over a subset of the positive quadrant in the 2D plane. The stability theory for these processes originally consisted of two distinct concepts termed asymptotic stability and stability along the pass respectively where the former is a necessary condition for the latter. Stability along the pass demands a bounded-input bounded-output property over the complete positive quadrant of the 2D plane and this is a very strong requirement, especially in terms of control law design. A more feasible alternative for some cases is strong practical stability, where previous work has formulated this property and obtained necessary and sufficient conditions for its existence together with Linear Matrix Inequality (LMI) based tests, which then extend to allow control law design. This paper develops considerably simpler, and hence computationally more efficient, stability tests that extend to allow control law design in the presence of uncertainty in process model
    • …
    corecore