983 research outputs found

    Monthly average daily global and diffuse solar radiation based on sunshine duration and clearness index for Brasov, Romania

    Get PDF
    The main objective of this study is to develop single location appropriate models for the estimation of the monthly average daily global and diffuse horizontal solar radiation for Brasov, Romania. The study focuses particularly on models based on the sunshine duration and clearness index. The data used for the calibration of the models were collected during a period of 4 yr, between November 2008 and October 2012, at the Transilvania University of Brasov. The testing and validation of the models was carried out using data from the online SoDa database for Brasov for the year 2005. Different statistical error tests were applied to evaluate the accuracy of the models. The predicted values are also compared with values from three other known models concerning the global and diffuse solar radiation. A new mixed model was developed for the estimation of monthly average daily global horizontal solar radiation. The data processing was performed by means of a real-time interface developed with LabVIEW graphical programming language. The parameters taken into account were the relative sunshine, the clearness index, the extraterrestrial radiation, the latitude and the longitude. The methodology is simple and effective and may be applied for any region. Its effectiveness was proven through comparison with global models

    The genetic basis of host preference and resting behavior in the major African malaria vector, Anopheles arabiensis

    Get PDF
    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability”for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals. Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer selection on host choice behavior within these vector populations; possibly in response to vector control. Controlled host-choice assays are needed to discern whether the observed genetic component has a direct relationship with innate host preference. A better understanding of the genetic basis for host feeding behavior in An. arabiensis may also open avenues for novel vector control strategies based on driving genes for zoophily into wild mosquito populations

    High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Volcanology and Geothermal Research 314 (2016): 142-155, doi:10.1016/j.jvolgeores.2015.07.037.Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation–reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial “Steaming Cliffs,” boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.Funding was provided by GNS Strategic Development Fund

    Heat flow and near-seafloor magnetic anomalies highlight hydrothermal circulation at Brothers volcano caldera, southern Kermadec arc, New Zealand

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(14), (2019): 8252-8260, doi: 10.1029/2019GL083517.Brothers volcano is the most hydrothermally active volcano along the Kermadec arc, with distinct hydrothermal fields located on the caldera walls and on the postcollapse volcanic cones. These sites display very different styles of hydrothermal activity in terms of temperature, gas content, fluid chemistry, and associated mineralization. Here we show the results of a systematic heat flow survey integrated with near‐seafloor magnetic data acquired using remotely operated vehicles and autonomous underwater vehicles. Large‐scale circulation is structurally controlled, with a deep (~1‐ to 2‐km depth) central recharge through the caldera floor and lateral discharge along the caldera walls and at the summits of the postcollapse cones. Shallow (~ 0.1‐0.2 km depth) circulation is characterized by small‐scale recharge zones located at a distance of ~ 0.1–0.2 km from the active vent sites.We thank the Captains and crews of the R/V Sonne, Thompson, and Tangaroa and the engineers from Wood Hole Oceanographic Institution and MARUM for the successful operation of ABE, Sentry, Quest 4000, and Jason. The heat flow data surveys were funded by NSF grant OCE‐1558356 (PI Susan Humphris) and a grant from the German Ministry for Education and Research BMBF, project no. 03G0253A (PI Andrea Koschinsky). Funding from the New Zealand Government (Ministry of Business, Innovation and Employment) helped enable this study. This paper was significantly improved by the comments from the Editor Rebecca Carey and from two unknown reviewers. The data used in this paper can be downloaded from the U.S. Lamont‐Doherty MGDS database.2020-01-1

    Identification of three single nucleotide polymorphisms in Anopheles gambiae immune signaling genes that are associated with natural Plasmodium falciparum infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laboratory studies have demonstrated that a variety of immune signaling pathways regulate malaria parasite infection in <it>Anopheles gambiae</it>, the primary vector species in Africa.</p> <p>Methods</p> <p>To begin to understand the importance of these associations under natural conditions, an association mapping approach was adopted to determine whether single nucleotide polymorphisms (SNPs) in selected immune signaling genes in <it>A. gambiae </it>collected in Mali were associated with the phenotype of <it>Plasmodium falciparum </it>infection.</p> <p>Results</p> <p>Three SNPs were identified in field-collected mosquitoes that were associated with parasite infection in molecular form-dependent patterns: two were detected in the <it>Toll5B </it>gene and one was detected in the gene encoding insulin-like peptide 3 precursor. In addition, one infection-associated <it>Toll5B </it>SNP was in linkage disequilibrium with a SNP in sequence encoding a mitogen-activated protein kinase that has been associated with Toll signaling in mammalian cells. Both <it>Toll5B </it>SNPs showed divergence from Hardy-Weinberg equilibrium, suggesting that selection pressure(s) are acting on these loci.</p> <p>Conclusions</p> <p>Seven of these eight infection-associated and linked SNPs alter codon frequency or introduce non-synonymous changes that would be predicted to alter protein structure and, hence, function, suggesting that these SNPs could alter immune signaling and responsiveness to parasite infection.</p

    Interpretation of gravity and magnetic anomalies at Lake Rotomahana: geological and hydrothermal implications

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Journal of Volcanology and Geothermal Research 314 (2016): 84-94, doi:10.1016/j.jvolgeores.2015.07.002.We investigate the geological and hydrothermal setting at Lake Rotomahana, using recently collected potential-field data, integrated with pre-existing regional gravity and aeromagnetic compilations. The lake is located on the southwest margin of the Okataina Volcanic Center (Haroharo caldera) and had well-known, pre-1886 Tarawera eruption hydrothermal manifestations (the famous Pink and White Terraces). Its present physiography was set by the caldera collapse during the 1886 eruption, together with the appearance of surface activities at the Waimangu Valley. Gravity models suggest subsidence associated with the Haroharo caldera is wider than the previously mapped extent of the caldera margins. Magnetic anomalies closely correlate with heat-flux data and surface hydrothermal manifestations and indicate that the west and northwestern shore of Lake Rotomahana are characterized by a large, well-developed hydrothermal field. The field extends beyond the lake area with deep connections to the Waimangu area to the south. On the south, the contact between hydrothermally demagnetized and magnetized rocks strikes along a structural lineament with high heat-flux and bubble plumes which suggest hydrothermal activity occurring west of Patiti Island. The absence of a well-defined demagnetization anomaly at this location suggests a very young age for the underlying geothermal system which was likely generated by the 1886 Tarawera eruption. Locally confined intense magnetic anomalies on the north shore of Lake Rotomahana are interpreted as basalts dikes with high magnetization. Some appear to have been emplaced before the 1886 Tarawera eruption. A dike located in proximity of the southwest lake shore may be related to the structural lineament controlling the development of the Patiti geothermal system, and could have been originated from the 1886 Tarawera eruption.Science funding provided by GNS Science Strategic Development Fund

    Clarification of anomalies in the application of a 2La molecular karyotyping method for the malaria vector Anopheles gambiae

    Get PDF
    BACKGROUND:Chromosomal inversions have been considered to be potentially important barriers to gene flow in many groups of animals through their effect on recombination suppression in heterokaryotypic individuals. Inversions can also enhance local adaptation in different groups of organisms and may often represent species-specific differences among closely related taxa. We conducted a study to characterize the 2La inversion karyotypes of An. gambiae sensu stricto mosquitoes sampled from the Kilombero Valley (Tanzania) using a newly designed PCR assay.RESULTS:We frequently encountered a (687 bp) fragment which was only present in the Kilombero Valley populations. Laboratory crossing between An. gambiae s.s. from Njage (Tanzania) and Kisumu (Western Kenya) populations resulted in F1 offspring carrying the observed fragment. Karyotype analysis did not indicate differences in 2La region chromosome morphology between individuals carrying the PCR fragments, the 207 bp fragment, or the 687 bp fragement.CONCLUSION:The observed insertion/deletion polymorphism within the region amplified by the 2La PCR diagnostic test may confound the interpretation of this assay and should be well considered in order to maintain an acceptable level of reliability in studies using this assay to describe the distribution and frequency of the 2La inversion among natural populations of An. gambiae s.

    Identifying avian malaria vectors: sampling methods influence outcomes

    Get PDF
    Background The role of vectors in the transmission of avian malaria parasites is currently understudied. Many studies that investigate parasite-vector relationships use limited trapping techniques and/or identify potential competent vectors in the field in such ways that cannot distinguish between an infected or infectious vector. Without the use of multiple trapping techniques that address the specific biology of diverse mosquito species, and without looking at the infection status of individual mosquitoes, it is not possible to make dependable conclusions on the role of mosquitoes in the transmission of avian malaria parasites. Methods We conducted two years of mosquito collections at a riparian preserve in California where a wide diversity of species were collected with multiple trap types. We hypothesized that competent mosquito species can influence the distribution and diversity of avian malaria parasites by acting as a compatibility filter for specific Plasmodium species. To determine the infection status of all individual mosquitoes for Plasmodium species/lineages, amplification within the cytochrome b gene was carried out on over 3000 individual mosquito thoraxes, and for those that tested positive we then repeated the same process for abdomens and salivary glands. Results Our data show heterogeneity in the transmissibility of Plasmodium among ornithophillic mosquito species. More specifically, Culex stigmatosoma appears to not be a vector of Plasmodium homopolare, a parasite that is prevalent in the avian population, but is a vector of multiple other Plasmodium species/lineages. Conclusions Our results suggest that conclusions made on the role of vectors from studies that do not use different mosquito trapping methods should be re-evaluated with caution, as we documented the potential for trapping biases, which may cause studies to miss important roles of specific mosquito species in the transmission of avian malaria. Moreover, we document heterogeneity in the transmission of Plasmodium spp. by mosquitoes can influence Plasmodium diversity and prevalence in specific locations to Plasmodium-vector incompatibilities

    In Situ Small-Angle X-ray Scattering Studies During Reversible Addition–Fragmentation Chain Transfer Aqueous Emulsion Polymerization

    Get PDF
    Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. In situ small-angle X-ray scattering (SAXS) studies of reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization have previously provided detailed structural information during self-assembly (see M. J. Derry et al., Chem. Sci. 2016, 7, 5078–5090). However, conducting the analogous in situ SAXS studies during RAFT aqueous emulsion polymerizations poses a formidable technical challenge because the inherently heterogeneous nature of such PISA formulations requires efficient stirring to generate sufficiently small monomer droplets. In the present study, the RAFT aqueous emulsion polymerization of 2-methoxyethyl methacrylate (MOEMA) has been explored for the first time. Chain extension of a relatively short non-ionic poly(glycerol monomethacrylate) (PGMA) precursor block leads to the formation of sterically-stabilized PGMA-PMOEMA spheres, worms or vesicles, depending on the precise reaction conditions. Construction of a suitable phase diagram enables each of these three morphologies to be reproducibly targeted at copolymer concentrations ranging from 10 to 30% w/w solids. High MOEMA conversions are achieved within 2 h at 70 °C, which makes this new PISA formulation well-suited for in situ SAXS studies using a new reaction cell. This bespoke cell enables efficient stirring and hence allows in situ monitoring during RAFT emulsion polymerization for the first time. For example, the onset of micellization and subsequent evolution in particle size can be studied when preparing PGMA29-PMOEMA30 spheres at 10% w/w solids. When targeting PGMA29-PMOEMA70 vesicles under the same conditions, both the micellar nucleation event and the subsequent evolution in the diblock copolymer morphology from spheres to worms to vesicles are observed. These new insights significantly enhance our understanding of the PISA mechanism during RAFT aqueous emulsion polymerization
    corecore