20,730 research outputs found
INTEGRAL discovery of unusually long broad-band X-ray activity from the Supergiant Fast X-ray Transient IGR J18483-0311
We report on a broad-band X-ray study (0.5-250 keV) of the Supergiant Fast
X-ray Transient IGR J18483-0311 using archival INTEGRAL data and a new targeted
XMM-Newton observation. Our INTEGRAL investigation discovered for the first
time an unusually long X-ray activity (3-60 keV) which continuously lasted for
at least 11 days, i.e. a significant fraction (about 60%) of the entire orbital
period, and spanned orbital phases corresponding to both periastron and
apastron passages. This prolongated X-ray activity is at odds with the much
shorter durations marking outbursts from classical SFXTs especially above 20
keV, as such it represents a departure from their nominal behavior and it adds
a further extreme characteristic to the already extreme SFXT IGR J18483-0311.
Our IBIS/ISGRI high energy investigation (100-250 keV) of archival outbursts
activity from the source showed that the recently reported hint of a possible
hard X-ray tail is not real and it is likely due to noisy background. The new
XMM-Newton targeted observation did not detect any sign of strong X-ray
outburst activity from the source despite being performed close to its
periastron passage, on the contrary IGR J18483-0311 was caught during the
common intermediate X-ray state with a low luminosity value of 3x10^33 erg s^-1
(0.5-10 keV). We discuss all the reported results in the framework of both
spherically symmetric clumpy wind scenario and quasi-spherical settling
accretion model.Comment: Accepted for publication on MNRAS. 10 pages, 7 figures, 1 tabl
Competing Quantum Orderings in Cuprate Superconductors: A Minimal Model
We present a minimal model for cuprate superconductors. At the unrestricted
mean-field level, the model produces homogeneous superconductivity at large
doping, striped superconductivity in the underdoped regime and various
antiferromagnetic phases at low doping and for high temperatures. On the
underdoped side, the superconductor is intrinsically inhomogeneous and global
phase coherence is achieved through Josephson-like coupling of the
superconducting stripes. The model is applied to calculate experimentally
measurable ARPES spectra.Comment: 5 pages, 4 eps included figure
The effects of organic farming on the soil physical environment
The aim of this research was to investigate the effects of organic farming practices on the development of soil physical properties, and in particular, soil structure in comparison with conventional agricultural management. The soil structure of organically and conventionally managed soils at one site was compared in a quantitative manner at different scales of observations using image analysis. Key soil physical and chemical properties were measured as well as the pore fractal geometry to characterise pore roughness. Organically managed soils had higher organic matter content and provided a more stable soil structure than conventionally managed soils. The higher porosity (%) at the macroscale in soil under conventional management was due to fewer larger pores while mesoand microscale porosity was found to be greater under organic management. Organically managed soils typically provided spatially well distributed pores of all sizes and of greater roughness compared to those under conventional management. These variations in the soil physical environment are likely to impact significantly on the performance of these soils for a number of key processes such as crop establishment and water availabilit
Structural Relaxation and Mode Coupling in a Simple Liquid: Depolarized Light Scattering in Benzene
We have measured depolarized light scattering in liquid benzene over the
whole accessible temperature range and over four decades in frequency. Between
40 and 180 GHz we find a susceptibility peak due to structural relaxation. This
peak shows stretching and time-temperature scaling as known from
relaxation in glass-forming materials. A simple mode-coupling model provides
consistent fits of the entire data set. We conclude that structural relaxation
in simple liquids and relaxation in glass-forming materials are
physically the same. A deeper understanding of simple liquids is reached by
applying concepts that were originally developed in the context of
glass-transition research.Comment: submitted to New J. Phy
Swift/XRT follow-up observations of unidentified INTEGRAL/IBIS sources
Many sources listed in the 4th IBIS/ISGRI survey are still unidentified, i.e.
lacking an X-ray counterpart or simply not studied at lower energies (< 10
keV). The cross-correlation between the list of IBIS sources in the 4th
catalogue and the Swift/XRT data archive is of key importance to search for the
X-ray counterparts; in fact, the positional accuracy of few arcseconds obtained
with XRT allows us to perform more efficient and reliable follow-up
observations at other wavelengths (optical, UV, radio). In this work, we
present the results of the XRT observations for four new gamma-ray sources: IGR
J12123-5802, IGR J1248.2-5828, IGR J13107-5626 and IGR J14080-3023. For IGR
J12123-5802 we find a likely counterpart, but further information are needed to
classified this object, IGR J1248.2-5828 is found to be a Seyfert 1.9, for IGR
J13107-5626 we suggest a possible AGN nature, while IGR J14080-3023 is
classified as a Seyfert 1.5 galaxy.Comment: 6 pages, 4 figure and 2 tables. Accepted for publication on PoS
(contribution PoS(extremesky2009)018), proceedings of "The Extreme sky:
Sampling the Universe above 10 keV", held in Otranto (Italy), 13-17 October
200
Infrared identification of IGR J09026-4812 as a Seyfert 1 galaxy
IGR J09026-4812 was discovered by INTEGRAL in 2006 as a new hard X-ray
source. Thereafter, an observation with Chandra pinpointed a single X-ray
source within the ISGRI error circle, showing a hard spectrum, and improving
its high-energy localisation to a subarcsecond accuracy. Thus, the X-ray source
was associated to the infrared counterpart 2MASS J09023731-4813339 whose JHKs
photometry indicated a highly reddened source. The high-energy properties and
the counterpart photometry suggested a high-mass X-ray binary with a main
sequence companion star located 6.3-8.1 kpc away and with a 0.3-10 keV
luminosity of 8e34 erg/s. New optical and infrared observations were needed to
confirm the counterpart and to reveal the nature of IGR J09026-4812. We
performed optical and near infrared observations on the counterpart 2MASS
J09023731-4813339 with the ESO/NTT telescope on March 2007. We achieved
photometry and spectroscopy in near infrared wavelengths and photometry in
optical wavelengths. The accurate astrometry at both optical and near infrared
wavelengths confirmed 2MASS J09023731-4813339 to be the counterpart of IGR
J09026-4812. However, the near infrared images show that the source is
extended, thus excluding any Galactic compact source possibility. The source
spectrum shows three main emission lines identified as the HeI lambda 1.0830
micron line, and the HI Pa_beta and Pa_alpha lines, typical in galaxies with an
active galactic nucleus. The broadness of these lines reached values as large
as 4000 km/s pointing towards a type 1 Seyfert galaxy. The redshift of the
source is z=0.0391(4). Thus, the near infrared photometry and spectroscopy
allowed us to classify IGR J09026-4812 as a Seyfert galaxy of type 1.Comment: 4 pages, 3 figures, Astronomy and Astrophysics in pres
- …