22,740,610 research outputs found
O18O and C18O observations of rho Oph A
Observations of the (N_J=1_1-1_0) ground state transition of O_2 with the
Odin satellite resulted in a about 5 sigma detection toward the dense core rho
Oph A. At the frequency of the line, 119 GHz, the Odin telescope has a beam
width of 10', larger than the size of the dense core, so that the precise
nature of the emitting source and its exact location and extent are unknown.
The current investigation is intended to remedy this. Telluric absorption makes
ground based O_2 observations essentially impossible and observations had to be
done from space. mm-wave telescopes on space platforms were necessarily small,
which resulted in large, several arcminutes wide, beam patterns. Although the
Earth's atmosphere is entirely opaque to low-lying O_2 transitions, it allows
ground based observations of the much rarer O18O in favourable conditions and
at much higher angular resolution with larger telescopes. In addition, rho Oph
A exhibits both multiple radial velocity systems and considerable velocity
gradients. Extensive mapping of the region in the proxy C18O (J=3-2) line can
be expected to help identify the O_2 source on the basis of its line shape and
Doppler velocity. Line opacities were determined from observations of optically
thin 13C18O (J=3-2) at selected positions. During several observing periods,
two C18O intensity maxima in rho Oph A were searched for in the 16O18O
(2_1-0_1) line at 234 GHz with the 12m APEX telescope. Our observations
resulted in an upper limit on the integrated O18O intensity of < 0.01 K km/s (3
sigma) into the 26.5" beam. We conclude that the source of observed O_2
emission is most likely confined to the central regions of the rho Oph A cloud.
In this limited area, implied O_2 abundances could thus be higher than
previously reported, by up to two orders of magnitude.Comment: 7 pages, 6 figures (5 colour), Astronomy & Astrophysic
Rotating molecular outflows: the young T Tauri star in CB26
The disk-outflow connection is thought to play a key role in extracting
excess angular momentum from a forming proto-star. Though jet rotation has been
observed in a few objects, no rotation of molecular outflows has been
unambiguously reported so far. We report new millimeter-interferometric
observations of the edge-on T Tauri star - disk system in the isolated Bok
globule CB26. The aim of these observations was to study the disk-outflow
relation in this 1Myr old low-mass young stellar object. The IRAM PdBI array
was used to observe 12CO(2-1) at 1.3mm in two configurations, resulting in
spectral line maps with 1.5 arcsec resolution. We use an empirical
parameterized steady-state outflow model combined with 2-D line radiative
transfer calculations and chi^2-minimization in parameter space to derive a
best-fit model and constrain parameters of the outflow. The data reveal a
previously undiscovered collimated bipolar molecular outflow of total length
~2000 AU, escaping perpendicular to the plane of the disk. We find peculiar
kinematic signatures that suggest the outflow is rotating with the same
orientation as the disk. However, we could not ultimately exclude jet
precession or two misaligned flows as possible origin of the observed peculiar
velocity field. There is indirect indication that the embedded driving source
is a binary system, which, together with the youth of the source, could provide
the clue to the observed kinematic features of the outflow. CB26 is so far the
most promising source to study the rotation of a molecular outflow. Assuming
that the outflow is rotating, we compute and compare masses, mass flux, angular
momenta, and angular momentum flux of disk and outflow and derive disk
dispersal timescales of 0.5...1 Myr, comparable to the age of the system.Comment: 14 pages, 6 figures, to appear in Astronomy & Astrophysic
Discovery of a peculiar Cepheid-like star towards the northern edge of the Small Magellanic Cloud
For seven years, the EROS-2 project obtained a mass of photometric data on
variable stars. We present a peculiar Cepheid-like star, in the direction of
the Small Magellanic Cloud, which demonstrates unusual photometric behaviour
over a short time interval. We report on data of the photometry acquired by the
MARLY telescope and spectroscopy from the EFOSC instrument for this star,
called EROS2 J005135-714459(sm0060n13842), which resembles the unusual Cepheid
HR 7308. The light curve of our target is analysed using the Analysis of
Variance method to determine a pulsational period of 5.5675 days. A fit of
time-dependent Fourier coefficients is performed and a search for proper motion
is conducted. The light curve exhibits a previously unobserved and spectacular
change in both mean magnitude and amplitude, which has no clear theoretical
explanation. Our analysis of the spectrum implies a radial velocity of 104 km
s and a metallicity of -0.40.2 dex. In the direction of right
ascension, we measure a proper motion of 17.46.0 mas yr using EROS
astrometry, which is compatible with data from the NOMAD catalogue. The nature
of EROS2 J005135-714459(sm0060n13842) remains unclear. For this star, we may
have detected a non-zero proper motion for this star, which would imply that it
is a foreground object. Its radial velocity, pulsational characteristics, and
photometric data, however, suggest that it is instead a Cepheid-like object
located in the SMC. In such a case, it would present a challenge to
conventional Cepheid models.Comment: Correction of typos in the abstrac
A spectroscopic survey of the youngest field stars in the solar neighbourhood. I. The optically bright sample
We present the first results of a ground-based programme conducted on 1-4m
class telescopes. Our sample consists of 1097 active and presumably young
stars, all of them being optical counterparts of RASS X-ray sources in the
northern hemisphere. We concentrate on the 704 optically brightest
(V_Ticho<=9.5 mag) candidates. We acquired high-res spectroscopy in the
Halpha/Li spectral regions for 426 of such stars without relevant literature
data. We describe the sample and the observations and we start to discuss its
physical properties. We used a cross-correlation technique and other tools to
derive accurate radial/rotational velocities and to perform a spectral
classification for both single and SB2 stars. The spectral subtraction
technique was used to derive chromospheric activity levels and Li abundances.
We estimated the fraction of young single stars and multiple systems in stellar
soft X-ray surveys and the contamination by more evolved systems, like RS
CVn's. We classified stars on the basis of Li abundance and give a glimpse of
their sky distribution. The sample appears to be a mixture of young
Pleiades-/Hyades- like stars plus an older Li-poor population (~1-2 Gyr). 7
stars with Li abundance compatible with the age of IC 2602 (~30 Myr) or younger
were detected as well, although 2 appear to be Li-rich giants. The discovery of
a large number of Li-rich giants is another outcome of this survey. The
contamination of soft X-ray surveys by old systems in which the activity level
is enhanced by tidal synchronisation is not negligible, especially for K-type
stars. 5 stars with Li content close to the primordial abundance are probably
associated with known moving groups in the solar neighbourhood. Some of them
are PTTS candidates according to their positions in the HR diagram.Comment: 16 pages, 12 figures, 6 tables; 2 figures and 2 tables in electronic
form only. Paper accepted by Astronomy and Astrophysic
Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities
The availability of asteroseismic constraints for a large sample of stars
from the missions CoRoT and Kepler paves the way for various statistical
studies of the seismic properties of stellar populations. In this paper, we
evaluate the impact of rotation-induced mixing and thermohaline instability on
the global asteroseismic parameters at different stages of the stellar
evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic
Giant Branch to distinguish stellar populations. We present a grid of stellar
evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and
0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed
either with standard prescriptions or including both thermohaline convection
and rotation-induced mixing. For the whole grid we provide the usual stellar
parameters (luminosity, effective temperature, lifetimes, ...), together with
the global seismic parameters, i.e. the large frequency separation and
asymptotic relations, the frequency corresponding to the maximum oscillation
power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing
of g-modes, and different acoustic radii. We discuss the signature of
rotation-induced mixing on the global asteroseismic quantities, that can be
detected observationally. Thermohaline mixing whose effects can be identified
by spectroscopic studies cannot be caracterized with the global seismic
parameters studied here. But it is not excluded that individual mode
frequencies or other well chosen asteroseismic quantities might help
constraining this mixing.Comment: 15 pages, 11 figures, accepted for publication in A&
High resolution spectroscopy for Cepheids distance determination. V. Impact of the cross-correlation method on the p-factor and the gamma-velocities
The cross correlation method (hereafter CC) is widely used to derive the
radial velocity curve of Cepheids when the signal to noise of the spectra is
low. However, if it is used with the wrong projection factor, it might
introduce some biases in the Baade-Wesselink (hereafter BW) methods of
determining the distance of Cepheids. In addition, it might affect the average
value of the radial velocity curve (or gamma-velocity) important for Galactic
structure studies. We aim to derive a period-projection factor relation
(hereafter Pp) appropriate to be used together with the CC method. Moreover, we
investigate whether the CC method can explain the misunderstood previous
calculation of the K-term of Cepheids. We observed eight galactic Cepheids with
the HARPS spectrograph. For each star, we derive an interpolated CC radial
velocity curve using the HARPS pipeline. The amplitudes of these curves are
used to determine the correction to be applied to the semi-theoretical
projection factor derived in Nardetto et al. (2007). Their average value (or
gamma-velocity) are also compared to the center-of-mass velocities derived in
Nardetto et al. (2008). The correction in amplitudes allows us to derive a new
Pp relation: p = [-0.08+-0.05] log P +[1.31+-0.06]. We also find a negligible
wavelength dependence (over the optical range) of the Pp relation. We finally
show that the gamma-velocity derived from the CC method is systematically
blue-shifted by about 1.0 +- 0.2km/s compared to the center-of-mass velocity of
the star. An additional blue-shift of 1.0km/s is thus needed to totally explain
the previous calculation of the K-term of Cepheids (around 2km/s). The new Pp
relation we derived is a solid tool for the distance scale calibration
(abridged).Comment: Comments : 9 pages, 3 Postscript figures, 5 Tables, accepted for
publication in A&
Extrasolar planets and brown dwarfs around A-F type stars - VII. Theta Cygni radial velocity variations: planets or stellar phenomenon?
(abridged) In the frame of the search for extrasolar planets and brown dwarfs
around early-type main-sequence stars, we present the results obtained on the
early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the
spectra. Our dedicated radial-velocity measurement method was used to monitor
the star's radial velocities over five years. We also use complementary, high
angular resolution and high-contrast images taken with PUEO at CFHT. We show
that Theta Cygni radial velocities are quasi-periodically variable, with a
~150-day period. These variations are not due to the ~0.35-Msun stellar
companion that we detected in imaging at more than 46 AU from the star. The
absence of correlation between the bisector velocity span variations and the
radial velocity variations for this 7 km/s vsini star, as well as other
criteria indicate that the observed radial velocity variations are not due to
stellar spots. The observed amplitude of the bisector velocity span variations
also seems to rule out stellar pulsations. However, we observe a peak in the
bisector velocity span periodogram at the same period as the one found in the
radial velocity periodogram, which indicates a probable link between these
radial velocity variations and the low amplitude lineshape variations which are
of stellar origin. Long-period variations are not expected from this type of
star to our knowledge. If a stellar origin (hence of new type) was to be
confirmed for these long-period radial velocity variations, this would have
several consequences on the search for planets around main-sequence stars, both
in terms of observational strategy and data analysis. An alternative
explanation for these variable radial velocities is the presence of at least
one planet of a few Jupiter masses orbiting at less than 1 AU. (abridged)Comment: 9 pages, accepted in A
Triggered massive-star formation on the borders of Galactic HII regions. IV- Star formation at the periphery of Sh2-212
Aims: We wish to establish whether sequential star formation is taking place
at the periphery of the Galactic HII region Sh2-212.
Methods: We present CO millimetre observations of this region obtained at the
IRAM 30-m telescope to investigate the distribution of associated molecular
material. We also use deep JHK observations obtained at the CFHT to study the
stellar content of the region, and radio observations obtained at the VLA to
look for the presence of an ultra-compact (UC) HII region and for maser
emission.
Results: In the optical, Sh2-212 is spherically symmetric around its central
exciting cluster. This HII region is located along a molecular filament. A
thin, well-defined half ring of molecular material surrounds the brightest part
of the HII region at the rear and is fragmented. The most massive fragment
(~200 solar masses) contains a massive young stellar object displaying a
near-IR excess; its spectral energy distribution indicates a high-mass
(~14solar masses), high-temperature (~30000K), and high-luminosity (~17000
solar luminosities) source. This object ionizes a UC HII region.
Conclusions: Sh2-212 is a good example of massive-star formation triggered
via the collect and collapse process. The massive YSO observed at its periphery
is a good candidate for a massive star formed in isolation.Comment: 12 pages, 14 figures. To be published in A&
Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. I. The nature of the companion star
Context: The INTEGRAL hard X-ray observatory has revealed an emerging
population of highly obscured X-ray binary systems through multi-wavelength
observations. Previous studies have shown that many of these sources are
high-mass X-ray binaries hosting neutron stars orbiting around luminous and
evolved companion stars. Aims: To better understand this newly-discovered
population, we have selected a sample of sources for which an accurate
localisation is available to identify the stellar counterpart and reveal the
nature of the companion star and of the binary system. Methods: We performed an
intensive study of a sample of thirteen INTEGRAL sources, through
multi-wavelength optical to NIR photometric and spectroscopic observations,
using EMMI and SofI instruments at the ESO NTT telescope. We performed accurate
astrometry and identified candidate counterparts for which we give the optical
and NIR magnitudes. We detected many spectral lines allowing us to determine
the spectral type of the companion star. We fitted with stellar black bodies
the mid-infrared to optical spectral energy distributions of these sources.
From the spectral analysis and SED fitting we identified the nature of the
companion stars and of the binary systems. (abridged).Comment: A&A in press; The official date of acceptance is 15/12/2007; 25
pages, 6 figures, 8 tables. New version with language editing required by
edito
- …