1,605 research outputs found

    Suppression of Hall-Term Effects by Gyroviscous Cancellation in Steady Collisionless Magnetic Reconnection

    Get PDF
    The formation of an ion-dissipation region, in which motions of electrons and ions decouple and fast magnetic reconnection occurs, is demonstrated during a steady state of two-dimensional collisionless driven reconnection by means of full-particle simulations. The Hall-term effect is suppressed due to the gyroviscous cancellation at scales between the ion-skin depth and ion-meandering-orbit scale, and thus ions are tied to the magnetic field. The ion frozen-in constraint is strongly broken by nongyrotropic pressure tensor effects due to ion-meandering motion, and thus the ion-dissipation region is formed at scales below the ion-meandering-orbit scale. A similar process is observed in the formation of an electron-dissipation region. These two dissipation regions are clearly observed in an out-of-plane current density profile

    Calculation of renormalized viscosity and resistivity in magnetohydrodynamic turbulence

    Full text link
    A self-consistent renormalization (RG) scheme has been applied to nonhelical magnetohydrodynamic turbulence with normalized cross helicity σc=0\sigma_c =0 and σc1\sigma_c \to 1. Kolmogorov's 5/3 powerlaw is assumed in order to compute the renormalized parameters. It has been shown that the RG fixed point is stable for ddc2.2d \ge d_c \approx 2.2. The renormalized viscosity ν\nu^* and resistivity η\eta^* have been calculated, and they are found to be positive for all parameter regimes. For σc=0\sigma_c=0 and large Alfv\'{e}n ratio (ratio of kinetic and magnetic energies) rAr_A, ν=0.36\nu^*=0.36 and η=0.85\eta^*=0.85. As rAr_A is decreased, ν\nu^* increases and η\eta^* decreases, untill rA0.25r_A \approx 0.25 where both ν\nu^* and η\eta^* are approximately zero. For large dd, both ν\nu^* and η\eta^* vary as d1/2d^{-1/2}. The renormalized parameters for the case σc1\sigma_c \to 1 are also reported.Comment: 19 pages REVTEX, 3 ps files (Phys. Plasmas, v8, 3945, 2001

    Turbulence driven magnetic reconnection causing long-wavelength magnetic islands

    Get PDF
    Magnetic reconnection caused by turbulence in a current sheet is studied by means of numerical simulations of fluid equations. It is found that turbulence produces long-wavelength magnetic islands even if the current sheet is so thick that spontaneous magnetic reconnection does not occur. Thus, turbulence modifies the threshold of magnetic island formation predicted by the conventional theory of spontaneous magnetic reconnection in a current sheet. In spite of the fact that the turbulence is driven by a short-wavelength instability due to a pressure gradient, the length of the magnetic island is the same order as the system size. The width of the island is several times the ion Larmor radius, and stronger turbulence causes wider magnetic islands. This suggests that the turbulence can trigger neoclassical tearing modes, which are the main nonlinear instability that limits the plasma pressure in magnetically confined plasmas. The long-wavelength magnetic island is formed by merging of small-scale magnetic islands

    Excitation of macromagnetohydrodynamic mode due to multiscale interaction in a quasi-steady equilibrium formed by a balance between microturbulence and zonal flow

    Get PDF
    This is the first numerical simulation demonstrating that a macromagnetohydrodynamic (macro-MHD) mode is excited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between microturbulence and zonal flow based on a reduced two-fluid model. This simulation of a macro-MHD mode, a double tearing mode, is accomplished in a reversed shear equilibrium that includes zonal flow and turbulence due to kinetic ballooning modes. In the quasi-steady equilibrium, a macroscale fluctuation that has the same helicity as the double tearing mode is a part of the turbulence. After a certain period of time, the macro-MHD mode begins to grow. It effectively utilizes free energy of the equilibrium current density gradient and is destabilized by a positive feedback loop between zonal flow suppression and magnetic island growth. Thus, once the macro-MHD appears from the quasi-equilibrium, it continues to grow steadily. This simulation is more comparable with experimental observations of growing macro-MHD activity than earlier MHD simulations starting from linear macroinstabilities in a static equilibrium

    Effect of zonal flow caused by microturbulence on the double tearing mode

    Get PDF
    The effect of zonal flow shear on the double tearing mode is investigated by solving the linear reduced two-fluid equations for the equilibrium including zonal flow. The zonal flow caused by microturbulence is obtained from nonlinear simulation results presented by A. Ishizawa and N. Nakajima [Phys. Plasmas 14, 040702 (2007)]. There is no clear evidence that could indicate whether the double tearing mode is stabilized or destabilized by the zonal flow

    Nonlinear parity mixtures controlling the propagation of interchange modes

    Get PDF
    The propagation velocity of a resistive interchange mode is numerically investigated based on a two-fluid model. It is newly found that the nonlinearity mixes the interchange parity and the tearing parity to produce magnetic islands and controls the propagation velocity of the instability in the poloidal direction. The parity of the interchange mode is conserved during the linear growing evolution. However, when the amplitude of the mode becomes large and nonlinear effects are dominant, the pure interchange mode does not satisfy the nonlinear two-fluid equation. Thus, the nonlinear energy transfer occurs from the interchange parity mode to the tearing parity mode, which is called the nonlinear parity mixtures, and the magnetic islands are produced by the interchange mode. The nonlinear magnetic island formation by the interchange mode plays a central role in controlling the interchange mode's propagation velocity, which is equal to the electron fluid velocity. This nonlinear process is essential in quantitatively reproducing the propagation velocity of the interchange mode, which is the same as the electron fluid velocity observed in the large helical device experiment. It is also found that one of the mechanisms of parity mixtures is a modulational instability

    Reversible collisionless magnetic reconnection

    Get PDF
    Reversible magnetic reconnection is demonstrated for the first time by means of gyrokinetic numerical simulations of a collisionless magnetized plasma. Growth of a current-driven instability in a sheared magnetic field is accompanied by magnetic reconnection due to electron inertia effects. Following the instability growth, the collisionless reconnection is accelerated with development of a cross-shaped structure of current density, and then all field lines are reconnected. The fully reconnected state is followed by the secondary reconnection resulting in a weakly turbulent state. A time-reversed simulation starting from the turbulent state manifests that the collisionless reconnection process proceeds inversely leading to the initial state. During the reversed reconnection, the kinetic energy is reconverted into the original magnetic field energy. In order to understand the stability of reversed process, an external perturbation is added to the fully reconnected state, and it is found that the accelerated reconnection is reversible when the deviation of the E ?? B streamlines due to the perturbation is comparable with or smaller than a current layer width
    corecore