9 research outputs found

    Long Distance Contribution to sdγs \to d\gamma and Implications for ΩΞγ,BsBdγ\Omega^-\to \Xi ^-\gamma, B_s \to B_d^*\gamma and bsγb \to s\gamma

    Full text link
    We estimate the long distance (LD) contribution to the magnetic part of the sdγs \to d\gamma transition using the Vector Meson Dominance approximation (V=ρ,ω,ψi)(V=\rho,\omega,\psi_i). We find that this contribution may be significantly larger than the short distance (SD) contribution to sdγs \to d\gamma and could possibly saturate the present experimental upper bound on the ΩΞγ\Omega^-\to \Xi^-\gamma decay rate, ΓΩΞγMAX3.7×109\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} \simeq 3.7\times10^{-9}eV. For the decay BsBdγB_s \to B^*_d\gamma, which is driven by sdγs \to d\gamma as well, we obtain an upper bound on the branching ratio BR(BsBdγ)<3×108BR(B_s \to B_d^*\gamma)<3\times10^{-8} from ΓΩΞγMAX\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma}. Barring the possibility that the Quantum Chromodynamics coefficient a2(ms)a_2(m_s) be much smaller than 1, ΓΩΞγMAX\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} also implies the approximate relation 23igψi2(0)mψi212gρ2(0)mρ2+16gω2(0)mω2\frac{2}{3} \sum_i \frac{g^2_{\psi_i}(0)}{m^2_{\psi_i}} \simeq \frac{1}{2} \frac{g^2_\rho(0)}{m^2_\rho} + \frac{1}{6}\frac{g^2_\omega(0)}{m^2_\omega}. This relation agrees quantitatively with a recent independent estimate of the l.h.s. by Deshpande et al., confirming that the LD contributions to bsγb \to s\gamma are small. We find that these amount to an increase of (4±2)%(4\pm2)\% in the magnitude of the bsγb \to s \gamma transition amplitude, relative to the SD contribution alone.Comment: 16 pages, LaTeX fil
    corecore