1,285 research outputs found
Discontinuous Transition from a Real Bound State to Virtual Bound State in a Mixed-Valence State of SmS
Golden SmS is a paramagnetic, mixed-valence system with a pseudogap. With
increasing pressure across a critical pressure Pc, the system undergoes a
discontinuous transition into a metallic, anti-ferromagnetically ordered state.
By using a combination of thermodynamic, transport, and magnetic measurements,
we show that the pseudogap results from the formation of a local bound state
with spin singlet. We further argue that the transition Pc is regarded as a
transition from an insulating electron-hole gas to a Kondo metal, i.e., from a
spatially bound state to a Kondo virtually bound state between 4f and
conduction electrons.Comment: 5 pages, 5 figure
A SIMULATION STUDY OF THE INTERNAL TWISTING TORQUE IN THE FOUETTÉ TURN
The purpose of this study was to investigate the effects of the magnitude of the twisting torque for one revolution of a Fouetté turn. Simulations were performed using a simple model comprising the supporting leg and the remainder of the body. It is shown that when the dancer turns more than one revolution with a small twisting torque, the turn will be decelerated and will finally stop. A large twisting torque is required at the start of each turn in order to increase the angular momentum which will subsequently decrease during the turn due to friction
Tunneling into fractional quantum Hall liquids
Motivated by the recent experiment by Grayson et.al., we investigate a
non-ohmic current-voltage characteristics for the tunneling into fractional
quantum Hall liquids. We give a possible explanation for the experiment in
terms of the chiral Tomonaga-Luttinger liquid theory. We study the interaction
between the charge and neutral modes, and found that the leading order
correction to the exponent is of the order of
, which reduces the exponent . We
suggest that it could explain the systematic discrepancy between the observed
exponents and the exact dependence.Comment: Latex, 5 page
Spin Berry phase in the Fermi arc states
Unusual electronic property of a Weyl semi-metallic nanowire is revealed. Its
band dispersion exhibits multiple subbands of partially flat dispersion,
originating from the Fermi arc states. Remarkably, the lowest energy flat
subbands bear a finite size energy gap, implying that electrons in the Fermi
arc surface states are susceptible of the spin Berry phase. This is shown to be
a consequence of spin-to-surface locking in the surface electronic states. We
verify this behavior and the existence of spin Berry phase in the low-energy
effective theory of Fermi arc surface states on a cylindrical nanowire by
deriving the latter from a bulk Weyl Hamiltonian. We point out that in any
surface state exhibiting a spin Berry phase pi, a zero-energy bound state is
formed along a magnetic flux tube of strength, hc/(2e). This effect is
highlighted in a surfaceless bulk system pierced by a dislocation line, which
shows a 1D chiral mode along the dislocation line.Comment: 9 pages, 9 figure
Anomalous tunneling conductances of a spin singlet \nu=2/3 edge states: Interplay of Zeeman splitting and Long Range Coulomb Interaction
The point contact tunneling conductance between edges of the spin singlet
quantum Hall states is studied both in the
quasiparticle tunneling picture and in the electron tunneling picture. Due to
the interplay of Zeeman splitting and the long range Coulomb interaction
between edges of opposite chirality novel spin excitations emerge, and their
effect is characterized by anomalous exponents of the charge and spin tunneling
conductances in various temperature ranges. Depending on the kinds of
scatterings at the point contact and the tunneling mechanism the anomalous
interaction in spin sector may enhance or suppress the tunneling conductances.
The effects of novel spin excitation are also relevant to the recent NMR
experiments on quantum Hall edges.Comment: Revtex File, 7 pages: To be published in Physical Reviews
Suppression of the soybean cyst nematode, Heterodera glycines, by short-term field cultivation and soil incorporation of mung bean.
© Koninklijke Brill NV, Leiden, 2021. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1163/15685411-bja10042Our previous study using pots reported that short-term growth of mung bean (Vigna radiata) may be useful to decrease the density of the soybean cyst nematode (SCN), Heterodera glycines, in soil. The objective of this study was to determine whether short-term growth of mung bean and its incorporation by ploughing decreased SCN density in infested fields. Firstly, we did pot experiments to evaluate the optimum temperature and moisture for hatching in soil. SCN hatching was stimulated at 25 and 30°C and not at 20°C; however, it was stimulated at alternating temperature conditions between 20 and 25°C. Soil moisture levels with pF 2.76 or less were required to stimulate SCN hatch in soil. Field experiments were done in Saitama, Kanagawa and Nara Prefectures, Japan. SCN density was reduced by nearly half even in control plots, in which mung bean was not cultivated and ploughed, in Saitama and Nara Prefectures. However, SCN density was reduced by nearly 80% or more in the three Prefectures, except for one plot in Kanagawa, and the soil temperature and moisture conditions were kept at around 20-30°C and at <pF 2.8. Increase in yield of green soybean by SCN control was estimated at 350 kg (1000 m)−2. Overall, the present study revealed that short-term field cultivation of mung bean and ploughing was a profitable method to decrease SCN density in infested fields and thereby to increase yield of green soybean.Peer reviewedFinal Accepted Versio
Strong quasi-particle tunneling study in the paired quantum Hall states
The quasi-particle tunneling phenomena in the paired fractional quantum Hall
states are studied. A single point-contact system is first considered. Because
of relevancy of the quasi-particle tunneling term, the strong tunneling regime
should be investigated.
Using the instanton method it is shown that the strong quasi-particle
tunneling regime is described as the weak electron tunneling regime
effectively.
Expanding to the network model the paired quantum Hall liquid to insulator
transition is discussed
Theory of non-equilibrium noise in general multi-terminal superconducting hydrid devices: application to multiple Cooper pair resonances
We consider the out-of-equilibrium behavior of a general class of mesoscopic
devices composed of several superconducting or/and normal metal leads separated
by quantum dots. Starting from a microscopic Hamiltonian description, we
provide a non-perturbative approach to quantum electronic transport in the
tunneling amplitudes between dots and leads: using the equivalent of a path
integral formulation, the lead degrees of freedom are integrated out in order
to compute both the current and the current correlations (noise) in this class
of systems, in terms of the dressed Green's function matrix of the quantum
dots. In order to illustrate the efficiency of this formalism, we apply our
results to the "all superconducting Cooper pair beam splitter", a device
composed of three superconducting leads connected via two quantum dots, where
crossed Andreev reflection operates Cooper pair splitting. Commensurate voltage
differences between the three leads allow to obtain expressions for the current
and noise as a function of the Keldysh Nambu Floquet dressed Green's function
of the dot system. This voltage configuration allows the occurrence of
non-local processes involving multiple Cooper pairs which ultimately lead to
the presence of non-zero DC currents in an out-of-equilibrium situation. We
investigate in details the results for the noise obtained numerically in the
specific case of opposite voltages, where the transport properties are
dominated by the so called "quartet processes", involving the coherent exchange
of two Cooper pairs among all three superconducting terminals. We show that
these processes are noiseless in the non-resonant case, and that this property
is also observed for other voltage configurations. When the dots are in a
resonant regime, the noise characteristics change qualitatively, with the
appearance of giant Fano factors.Comment: 18 pages, 12 figure
- …