627 research outputs found
Time for pulse traversal through slabs of dispersive and negative (, ) materials
The traversal times for an electromagnetic pulse traversing a slab of
dispersive and dissipative material with negative dielectric permittivity
() and magnetic permeability () have been calculated by using
the average flow of electromagnetic energy in the medium. The effects of
bandwidth of the pulse and dissipation in the medium have been investigated.
While both large bandwidth and large dissipation have similar effects in
smoothening out the resonant features that appear due to Fabry-P\'{e}rot
resonances, large dissipation can result in very small or even negative
traversal times near the resonant frequencies. We have also investigated the
traversal times and Wigner delay times for obliquely incident pulses and
evanescent pulses. The coupling to slab plasmon polariton modes in frequency
ranges with negative or is shown to result in large traversal
times at the resonant conditions. We also find that the group velocity mainly
contributes to the delay times for pulse propagating across a slab with n=-1.
We have checked that the traversal times are positive and subluminal for pulses
with sufficiently large bandwidths.Comment: 9 pages, 9 figures, Submitted to Phys. Rev.
Drug resistance in Plasmodium falciparum from the Chittagong Hill Tracts, Bangladesh.
OBJECTIVE: To assess the efficacy of antimalarial treatment and molecular markers of Plasmodium falciparum resistance in the Chittagong Hill Tracts of Bangladesh. METHODS: A total of 203 patients infected with P. falciparum were treated with quinine 3 days plus sulphadoxine/pyrimethamine (SP) combination therapy, and followed up during a 4-week period. Blood samples collected before treatment were genotyped for parasite mutations related to chloroquine (pfcrt and pfmdr1 genes) or SP resistance (dhfr and dhps). RESULTS: Of 186 patients who completed follow-up, 32 patients (17.2%) failed to clear parasitaemia or became positive again within 28 days after treatment. Recurring parasitaemia was related to age (chi(2) = 4.8, P < 0.05) and parasite rates on admission (t = 3.1, P < 0.01). PCR analysis showed that some of these cases were novel infections. The adjusted recrudescence rate was 12.9% (95% CI 8.1-17.7) overall, and 16.6% (95% CI 3.5-29.7), 15.5% (95% CI 8.3-22.7) and 6.9% (95% CI 0.4-13.4) in three age groups (<5 years, 5-14, > or =15). The majority of infections carried mutations associated with chloroquine resistance: 94% at pfcrt and 70% at pfmdr. Sp-resistant genotypes were also frequent: 99% and 73% of parasites carried two or more mutations at dhfr and dhps, respectively. The frequency of alleles at dhfr, dhps and pfmdr was similar in cases that were successfully treated and those that recrudesced. CONCLUSIONS: The clinical trial showed that quinine 3-days combined to SP is still relatively effective in the Chittagong Hill Tracts. However, if this regimen is continued to be widely used, further development of SP resistance and reduced quinine sensitivity are to be expected. The genotyping results suggest that neither chloroquine nor SP can be considered a reliable treatment for P. falciparum malaria any longer in this area of Bangladesh
Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster via a bacteriophage
BACKGROUND:
Shigella spp. are the primary causative agents of bacillary dysentery. Since its emergence in the late 1980s, the S. flexneri serotype 1c remains poorly understood, particularly with regard to its origin and genetic evolution. This article provides a molecular insight into this novel serotype and the gtrIC gene cluster that determines its unique immune recognition.
RESULTS:
A PCR of the gtrIC cluster showed that serotype 1c isolates from different geographical origins were genetically conserved. An analysis of sequences flanking the gtrIC cluster revealed remnants of a prophage genome, in particular integrase and tRNAPro genes. Meanwhile, Southern blot analyses on serotype 1c, 1a and 1b strains indicated that all the tested serotype 1c strains may have had a common origin that has since remained distinct from the closely related 1a and 1b serotypes. The identification of prophage genes upstream of the gtrIC cluster is consistent with the notion of bacteriophage-mediated integration of the gtrIC cluster into a pre-existing serotype.
CONCLUSIONS:
This is the first study to show that serotype 1c isolates from different geographical origins share an identical pattern of genetic arrangement, suggesting that serotype 1c strains may have originated from a single parental strain. Analysis of the sequence around the gtrIC cluster revealed a new site for the integration of the serotype converting phages of S. flexneri. Understanding the origin of new pathogenic serotypes and the molecular basis of serotype conversion in S. flexneri would provide information for developing cross-reactive Shigella vaccines
A Knob for Changing Light Propagation from Subluminal to Superluminal
We show how the application of a coupling field connecting the two lower
metastable states of a lambda-system can produce a variety of new results on
the propagation of a weak electromagnetic pulse. In principle the light
propagation can be changed from subluminal to superluminal. The negative group
index results from the regions of anomalous dispersion and gain in
susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.
Edge detection in microscopy images using curvelets
BACKGROUND: Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. RESULTS: We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is then processed using the non-maximal suppression and thresholding steps of the Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be extended along the directions given by the curvelets to provide a more connected edge map. We compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and show that our scheme performs better in detecting larger, elongated structures possibly composed of several step or ridge edges. CONCLUSION: The proposed curvelet based edge detection is a novel and competitive approach for imaging problems. We expect that the methodology and the accompanying software will facilitate and improve edge detection in images available using light or electron microscopy
SCREENING OF SOME RESTORER AND MAINTAINER HYBRID RICE LINES AGAINST SHEATH BLIGHT (Rhizoctonia solani)
An experiment was conducted at the field laboratory of Genetics and Plant Breeding Department, BAU, Mymensingh during July to December, 2000. Forty-four test entries of parental lines of rice with one susceptible (BR 11) and one resistant check (BRRI dhan 29) were screened against sheath blight (Rhizoctonia solani) at maximum tillering and flowering stage in the field. The pathogenicity test was studied in the laboratory. Ten lines were resistant, 31 were moderately resistant and 3 showed moderately susceptible reaction at maximum tillering stage. At flowering stage only 2 lines were resistant, 24 were moderately resistant and 18 lines were moderately susceptible
Slow Light Propagation in a Thin Optical Fiber via Electromagnetically Induced Transparency
We propose a novel configuration that utilizes electromagnetically induced
transparency (EIT) to tailor a fiber mode propagating inside a thin optical
fiber and coherently control its dispersion properties to drastically reduce
the group velocity of the fiber mode. The key to this proposal is: the
evanescent-like field of the thin fiber strongly couples with the surrounding
active medium, so that the EIT condition is met by the medium. We show how the
properties of the fiber mode is modified due to the EIT medium, both
numerically and analytically. We demonstrate that the group velocity of the new
modified fiber mode can be drastically reduced (approximately 44 m/sec) using
the coherently prepared orthohydrogen doped in a matrix of parahydrogen crystal
as the EIT medium.Comment: 10 pages in two column RevTex4, 6 Figure
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
- …