180 research outputs found
Effect of photoions on the line shapes of the F\"orster resonance and microwave transitions in cold rubidium Rydberg atoms
Experiments on the spectroscopy of the F\"orster resonance Rb(37P)+Rb(37P) ->
Rb(37S)+Rb(38S) and microwave transitions nP -> n'S, n'D between Rydberg states
of cold Rb atoms in a magneto-optical trap have been performed. Under ordinary
conditions, all spectra exhibited a 2-3 MHz line width independently of the
interaction time of atoms with each other or with microwave radiation, although
the ultimate resonance width should be defined by the inverse interaction time.
Analysis of the experimental conditions has shown that the main source of the
line broadening was the inhomogeneous electric field of cold photoions appeared
at the excitation of initial Rydberg nP states by broadband pulsed laser
radiation. Using an additional pulse of the electric field, which rapidly
removed the photoions after the laser pulse, lead to a substantial narrowing of
the microwave and F\"orster resonances. An analysis of various sources of the
line broadening in cold Rydberg atoms has been conducted.Comment: 10 pages, 6 figure
Quasiclassical calculations of BBR-induced depopulation rates and effective lifetimes of Rydberg nS, nP and nD alkali-metal atoms with n < 80
Rates of depopulation by blackbody radiation (BBR) and effective lifetimes of
alkali-metal \textit{nS}, \textit{n}P and \textit{nD} Rydberg states have been
calculated in a wide range of principal quantum numbers at the
ambient temperatures of 77, 300 and 600 K. Quasiclassical formulas were used to
calculate the radial matrix elements of the dipole transitions from Rydberg
states. Good agreement of our numerical results with the available theoretical
and experimental data has been found. We have also obtained simple analytical
formulas for estimates of effective lifetimes and BBR-induced depopulation
rates, which well agree with the numerical data.Comment: 12 pages, 6 figures, 8 tables. Typo in Eq.16 corrected in V2. Typos
in Eq.5 and Eq.9 corrected in V3. Error in calculation of Rb nP_{3/2}
effective lifetimes corrected in V4: see new data in Table II and Table VII,
Erratum to be published in PR
Ionization of Sodium and Rubidium nS, nP and nD Rydberg atoms by blackbody radiation
Results of theoretical calculations of ionization rates of Rb and Na Rydberg
atoms by blackbody radiation (BBR) are presented. Calculations have been
performed for nS, nP and nD states of Na and Rb, which are commonly used in a
variety of experiments, at principal quantum numbers n=8-65 and at three
ambient temperatures of 77, 300 and 600 K. A peculiarity of our calculations is
that we take into account the contributions of BBR-induced redistribution of
population between Rydberg states prior to photoionization and field ionization
by extraction electric field pulses. The obtained results show that these
phenomena affect both the magnitude of measured ionization rates and shapes of
their dependencies on n. The calculated ionization rates are compared with the
results of our earlier measurements of BBR-induced ionization rates of Na nS
and nD Rydberg states with n=8-20 at 300 K. A good agreement for all states
except nS with n>15 is observed. We also present the useful analytical formulae
for quick estimation of BBR ionization rates of Rydberg atoms.Comment: 14 pages, 6 figures, 6 tables in Appendi
Deterministic single-atom excitation via adiabatic passage and Rydberg blockade
We propose to use adiabatic rapid passage with a chirped laser pulse in the
strong dipole blockade regime to deterministically excite only one Rydberg atom
from randomly loaded optical dipole traps or optical lattices. The chirped
laser excitation is shown to be insensitive to the random number \textit{N} of
the atoms in the traps. Our method overcomes the problem of the
dependence of the collective Rabi frequency, which was the main obstacle for
deterministic single-atom excitation in the ensembles with unknown \textit{N},
and can be applied for single-atom loading of dipole traps and optical
lattices.Comment: 6 pages, 5 figures. Version 5 is expanded and submitted to PRA. Typo
in Fig.4 corrected in Version 2. Version 3 and 4 are duplicates of V
- …