180 research outputs found

    Effect of photoions on the line shapes of the F\"orster resonance and microwave transitions in cold rubidium Rydberg atoms

    Full text link
    Experiments on the spectroscopy of the F\"orster resonance Rb(37P)+Rb(37P) -> Rb(37S)+Rb(38S) and microwave transitions nP -> n'S, n'D between Rydberg states of cold Rb atoms in a magneto-optical trap have been performed. Under ordinary conditions, all spectra exhibited a 2-3 MHz line width independently of the interaction time of atoms with each other or with microwave radiation, although the ultimate resonance width should be defined by the inverse interaction time. Analysis of the experimental conditions has shown that the main source of the line broadening was the inhomogeneous electric field of cold photoions appeared at the excitation of initial Rydberg nP states by broadband pulsed laser radiation. Using an additional pulse of the electric field, which rapidly removed the photoions after the laser pulse, lead to a substantial narrowing of the microwave and F\"orster resonances. An analysis of various sources of the line broadening in cold Rydberg atoms has been conducted.Comment: 10 pages, 6 figure

    Quasiclassical calculations of BBR-induced depopulation rates and effective lifetimes of Rydberg nS, nP and nD alkali-metal atoms with n < 80

    Full text link
    Rates of depopulation by blackbody radiation (BBR) and effective lifetimes of alkali-metal \textit{nS}, \textit{n}P and \textit{nD} Rydberg states have been calculated in a wide range of principal quantum numbers n80n \le 80 at the ambient temperatures of 77, 300 and 600 K. Quasiclassical formulas were used to calculate the radial matrix elements of the dipole transitions from Rydberg states. Good agreement of our numerical results with the available theoretical and experimental data has been found. We have also obtained simple analytical formulas for estimates of effective lifetimes and BBR-induced depopulation rates, which well agree with the numerical data.Comment: 12 pages, 6 figures, 8 tables. Typo in Eq.16 corrected in V2. Typos in Eq.5 and Eq.9 corrected in V3. Error in calculation of Rb nP_{3/2} effective lifetimes corrected in V4: see new data in Table II and Table VII, Erratum to be published in PR

    Ionization of Sodium and Rubidium nS, nP and nD Rydberg atoms by blackbody radiation

    Get PDF
    Results of theoretical calculations of ionization rates of Rb and Na Rydberg atoms by blackbody radiation (BBR) are presented. Calculations have been performed for nS, nP and nD states of Na and Rb, which are commonly used in a variety of experiments, at principal quantum numbers n=8-65 and at three ambient temperatures of 77, 300 and 600 K. A peculiarity of our calculations is that we take into account the contributions of BBR-induced redistribution of population between Rydberg states prior to photoionization and field ionization by extraction electric field pulses. The obtained results show that these phenomena affect both the magnitude of measured ionization rates and shapes of their dependencies on n. The calculated ionization rates are compared with the results of our earlier measurements of BBR-induced ionization rates of Na nS and nD Rydberg states with n=8-20 at 300 K. A good agreement for all states except nS with n>15 is observed. We also present the useful analytical formulae for quick estimation of BBR ionization rates of Rydberg atoms.Comment: 14 pages, 6 figures, 6 tables in Appendi

    Deterministic single-atom excitation via adiabatic passage and Rydberg blockade

    Full text link
    We propose to use adiabatic rapid passage with a chirped laser pulse in the strong dipole blockade regime to deterministically excite only one Rydberg atom from randomly loaded optical dipole traps or optical lattices. The chirped laser excitation is shown to be insensitive to the random number \textit{N} of the atoms in the traps. Our method overcomes the problem of the N\sqrt {N} dependence of the collective Rabi frequency, which was the main obstacle for deterministic single-atom excitation in the ensembles with unknown \textit{N}, and can be applied for single-atom loading of dipole traps and optical lattices.Comment: 6 pages, 5 figures. Version 5 is expanded and submitted to PRA. Typo in Fig.4 corrected in Version 2. Version 3 and 4 are duplicates of V
    corecore