1,161 research outputs found

    Formation of Quantum Shock Waves by Merging and Splitting Bose-Einstein Condensates

    Full text link
    The processes of merging and splitting dilute-gas Bose-Einstein condensates are studied in the nonadiabatic, high-density regime. Rich dynamics are found. Depending on the experimental parameters, uniform soliton trains containing more than ten solitons or the formation of a high-density bulge as well as quantum (or dispersive) shock waves are observed experimentally within merged BECs. Our numerical simulations indicate the formation of many vortex rings. In the case of splitting a BEC, the transition from sound-wave formation to dispersive shock-wave formation is studied by use of increasingly stronger splitting barriers. These experiments realize prototypical dispersive shock situations.Comment: 10 pages, 8 figure

    Semiclassical dynamics of quasi-one-dimensional, attractive Bose-Einstein condensates

    Full text link
    The strongly interacting regime for attractive Bose-Einstein condensates (BECs) tightly confined in an extended cylindrical trap is studied. For appropriately prepared, non-collapsing BECs, the ensuing dynamics are found to be governed by the one-dimensional focusing Nonlinear Schr\"odinger equation (NLS) in the semiclassical (small dispersion) regime. In spite of the modulational instability of this regime, some mathematically rigorous results on the strong asymptotics of the semiclassical limiting solutions were obtained recently. Using these results, "implosion-like" and "explosion-like" events are predicted whereby an initial hump focuses into a sharp spike which then expands into rapid oscillations. Seemingly related behavior has been observed in three-dimensional experiments and models, where a BEC with a sufficient number of atoms undergoes collapse. The dynamical regimes studied here, however, are not predicted to undergo collapse. Instead, distinct, ordered structures, appearing after the "implosion", yield interesting new observables that may be experimentally accessible.Comment: 9 pages, 3 figure

    Vortex-antivortex proliferation from an obstacle in thin film ferromagnets

    Get PDF
    Magnetization dynamics in thin film ferromagnets can be studied using a dispersive hydrodynamic formulation. The equations describing the magnetodynamics map to a compressible fluid with broken Galilean invariance parametrized by the longitudinal spin density and a magnetic analog of the fluid velocity that define spin-density waves. A direct consequence of these equations is the determination of a magnetic Mach number. Micromagnetic simulations reveal nucleation of nonlinear structures from an impenetrable object realized by an applied magnetic field spot or a defect. In this work, micromagnetic simulations demonstrate vortex-antivortex pair nucleation from an obstacle. Their interaction establishes either ordered or irregular vortex-antivortex complexes. Furthermore, when the magnetic Mach number exceeds unity (supersonic flow), a Mach cone and periodic wavefronts are observed, which can be well-described by solutions of the steady, linearized equations. These results are reminiscent of theoretical and experimental observations in Bose-Einstein condensates, and further supports the analogy between the magnetodynamics of a thin film ferromagnet and compressible fluids. The nucleation of nonlinear structures and vortex-antivortex complexes using this approach enables the study of their interactions and effects on the stability of spin-density waves.Comment: 23 pages, 7 figure

    Pion Pair Production with Higher Order Radiative Corrections in Low Energy e+e- Collisions

    Get PDF
    The complete one-loop QED initial state, final state and initial--final state interference corrections to the process e+e- -> pi+pi- are presented. Analytic formulae are given for the virtual and for the real photon corrections. The total cross section, the pion angular distribution and the pi+pi- invariant mass distribution are investigated in the regime of experimentally realistic kinematical cuts. It is shown that in addition to the full one-loop corrections also two-loop initial state corrections and even the resummation of higher order soft photon logarithms can be necessary if at least per cent accuracy is required. For the data analysis we focus on an inclusive treatment of all photons. The theoretical error concerning our treatment of radiative corrections is then estimated to be less than 2 per mille for both the measurement of the total cross section and the pi+pi- invariant mass distribution. In addition we discuss the model uncertainty due to the pion substructure. Altogether the precision of the theoretical prediction matches the requirements of low energy e+e- experiments like the ones going on at DAFNE or VEPP-2M.Comment: 16 pages 9 figures 7 tables; 6 figs added+text; modified Eqs.(56,68), enhanced appendice
    • …
    corecore