575 research outputs found

    Quantum magnetism with ultracold molecules

    Full text link
    This article gives an introduction to the realization of effective quantum magnetism with ultracold molecules in an optical lattice, reviews experimental and theoretical progress, and highlights future opportunities opened up by ongoing experiments. Ultracold molecules offer capabilities that are otherwise difficult or impossible to achieve in other effective spin systems, such as long-ranged spin-spin interactions with controllable degrees of spatial and spin anisotropy and favorable energy scales. Realizing quantum magnetism with ultracold molecules provides access to rich many-body behaviors, including many exotic phases of matter and interesting excitations and dynamics. Far-from-equilibrium dynamics plays a key role in our exposition, just as it did in recent ultracold molecule experiments realizing effective quantum magnetism. In particular, we show that dynamical probes allow the observation of correlated many-body spin physics, even in polar molecule gases that are not quantum degenerate. After describing how quantum magnetism arises in ultracold molecules and discussing recent observations of quantum magnetism with polar molecules, we survey prospects for the future, ranging from immediate goals to long-term visions.Comment: 21 pages, 6 figures, 1 table. Review articl

    Synthetic dimensions in ultracold molecules: quantum strings and membranes

    Full text link
    Synthetic dimensions alter one of the most fundamental properties in nature, the dimension of space. They allow, for example, a real three-dimensional system to act as effectively four-dimensional. Driven by such possibilities, synthetic dimensions have been engineered in ongoing experiments with ultracold matter. We show that rotational states of ultracold molecules can be used as synthetic dimensions extending to many - potentially hundreds of - synthetic lattice sites. Microwaves coupling rotational states drive fully controllable synthetic inter-site tunnelings, enabling, for example, topological band structures. Interactions leads to even richer behavior: when molecules are frozen in a real space lattice with uniform synthetic tunnelings, dipole interactions cause the molecules to aggregate to a narrow strip in the synthetic direction beyond a critical interaction strength, resulting in a quantum string or a membrane, with an emergent condensate that lives on this string or membrane. All these phases can be detected using measurements of rotational state populations.Comment: 5-page article + 4 figures + references; 7 pages + 4 figures in Supplemen

    Accessing Rydberg-dressed interactions using many-body Ramsey dynamics

    Get PDF
    We demonstrate that Ramsey spectroscopy can be used to observe Rydberg-dressed interactions. In contrast to many prior proposals, our scheme operates comfortably within experimentally measured lifetimes, and accesses a regime where quantum superpositions are crucial. The key idea is to build a spin-1/2 from one level that is Rydberg-dressed and another that is not. These levels may be hyperfine or long-lived electronic states. An Ising spin model governs the Ramsey dynamics, for which we derive an exact solution. Due to the structure of Rydberg interactions, the dynamics differs significantly from that in other spin systems. As one example, spin echo can increase the rate at which coherence decays. The results also apply to bare (undressed) Rydberg states as a special case, for which we quantitatively reproduce recent ultrafast experiments without fitting

    A Model for Scattering with Proliferating Resonances: Many Coupled Square Wells

    Get PDF
    We present a multichannel model for elastic interactions, comprised of an arbitrary number of coupled finite square-well potentials, and derive semi-analytic solutions for its scattering behavior. Despite the model's simplicity, it is flexible enough to include many coupled short-ranged resonances in the vicinity of the collision threshold, as is necessary to describe ongoing experiments in ultracold molecules and lanthanide atoms. We also introduce a simple, but physically realistic, statistical ensemble for parameters in this model. We compute the resulting probability distributions of nearest-neighbor resonance spacings and analyze them by fitting to the Brody distribution. We quantify the ability of alternative distribution functions, for resonance spacing and resonance number variance, to describe the crossover regime. The analysis demonstrates that the multichannel square-well model with the chosen ensemble of parameters naturally captures the crossover from integrable to chaotic scattering as a function of closed channel coupling strength.Comment: 11 pages, 8 figure

    Cooling Fermions in an Optical Lattice by Adiabatic Demagnetization

    Full text link
    The Fermi-Hubbard model describes ultracold fermions in an optical lattice and exhibits antiferromagnetic long-ranged order below the N\'{e}el temperature. However, reaching this temperature in the lab has remained an elusive goal. In other atomic systems, such as trapped ions, low temperatures have been successfully obtained by adiabatic demagnetization, in which a strong effective magnetic field is applied to a spin-polarized system, and the magnetic field is adiabatically reduced to zero. Unfortunately, applying this approach to the Fermi-Hubbard model encounters a fundamental obstacle: the SU(2)SU(2) symmetry introduces many level crossings that prevent the system from reaching the ground state, even in principle. However, by breaking the SU(2)SU(2) symmetry with a spin-dependent tunneling, we show that adiabatic demagnetization can achieve low temperature states. Using density matrix renormalization group (DMRG) calculations in one dimension, we numerically find that demagnetization protocols successfully reach low temperature states of a spin-anisotropic Hubbard model, and we discuss how to optimize this protocol for experimental viability. By subsequently ramping spin-dependent tunnelings to spin-independent tunnelings, we expect that our protocol can be employed to produce low-temperature states of the Fermi-Hubbard Model.Comment: References adde

    Number-conserving interacting fermion models with exact topological superconducting ground states

    Get PDF
    We present a method to construct number-conserving Hamiltonians whose ground states exactly reproduce an arbitrarily chosen BCS-type mean-field state. Such parent Hamiltonians can be constructed not only for the usual ss-wave BCS state, but also for more exotic states of this form, including the ground states of Kitaev wires and 2D topological superconductors. This method leads to infinite families of locally-interacting fermion models with exact topological superconducting ground states. After explaining the general technique, we apply this method to construct two specific classes of models. The first one is a one-dimensional double wire lattice model with Majorana-like degenerate ground states. The second one is a two-dimensional px+ipyp_x+ip_y superconducting model, where we also obtain analytic expressions for topologically degenerate ground states in the presence of vortices. Our models may provide a deeper conceptual understanding of how Majorana zero modes could emerge in condensed matter systems, as well as inspire novel routes to realize them in experiment.Comment: 5 pages, 2 figures; supplement: 4 pages, 1 figur
    • …
    corecore