7 research outputs found

    Two complete axiomatisations of pure-state qubit quantum computing

    No full text
    Categorical quantum mechanics places finite-dimensional quantum theory in the context of compact closed categories, with an emphasis on diagrammatic reasoning. In this framework, two equational diagrammatic calculi have been proposed for pure-state qubit quantum computing: the ZW calculus, developed by Coecke, Kissinger and the first author for the purpose of qubit entanglement classification, and the ZX calculus, introduced by Coecke and Duncan to give an abstract description of complementary observables. Neither calculus, however, provided a complete axiomatisation of their model. In this paper, we present extended versions of ZW and ZX, and show their completeness for pure-state qubit theory, thus solving two major open problems in categorical quantum mechanics. First, we extend the original ZW calculus to represent states and linear maps with coefficients in an arbitrary commutative ring, and prove completeness by a strategy that rewrites all diagrams into a normal form. We then extend the language and axioms of the original ZX calculus, and show their completeness for pure-state qubit theory through a translation between ZX and ZW specialised to the field of complex numbers. This translation expands the one used by Jeandel, Perdrix, and Vilmart to derive an axiomatisation of the approximately universal Clifford+T fragment; restricting the field of complex numbers to a suitable subring, we obtain an alternative axiomatisation of the same theory

    Nonstandard functional interpretations and categorical models

    No full text
    Recently, the second author, Briseid, and Safarik introduced nonstandard Dialectica, a functional interpretation capable of eliminating instances of familiar principles of nonstandard arithmetic—including overspill, underspill, and generalizations to higher types—from proofs. We show that the properties of this interpretation are mirrored by first-order logic in a constructive sheaf model of nonstandard arithmetic due to Moerdijk, later developed by Palmgren, and draw some new connections between nonstandard principles and principles that are rejected by strict constructivism. Furthermore, we introduce a variant of the Diller–Nahm interpretation with two different kinds of quantifiers, similar to Hernest’s light Dialectica interpretation, and show that one can obtain nonstandard Dialectica by weakening the computational content of the existential quantifiers—a process called herbrandization. We also define a constructive sheaf model mirroring this new functional interpretation, and show that the process of herbrandization has a clear meaning in terms of these sheaf models

    Two complete axiomatisations of pure-state qubit quantum computing

    No full text
    Categorical quantum mechanics places finite-dimensional quantum theory in the context of compact closed categories, with an emphasis on diagrammatic reasoning. In this framework, two equational diagrammatic calculi have been proposed for pure-state qubit quantum computing: the ZW calculus, developed by Coecke, Kissinger and the first author for the purpose of qubit entanglement classification, and the ZX calculus, introduced by Coecke and Duncan to give an abstract description of complementary observables. Neither calculus, however, provided a complete axiomatisation of their model. In this paper, we present extended versions of ZW and ZX, and show their completeness for pure-state qubit theory, thus solving two major open problems in categorical quantum mechanics. First, we extend the original ZW calculus to represent states and linear maps with coefficients in an arbitrary commutative ring, and prove completeness by a strategy that rewrites all diagrams into a normal form. We then extend the language and axioms of the original ZX calculus, and show their completeness for pure-state qubit theory through a translation between ZX and ZW specialised to the field of complex numbers. This translation expands the one used by Jeandel, Perdrix, and Vilmart to derive an axiomatisation of the approximately universal Clifford+T fragment; restricting the field of complex numbers to a suitable subring, we obtain an alternative axiomatisation of the same theory

    Nonstandard Functional Interpretations and Categorical Models

    No full text
    Recently, the second author, Briseid, and Safarik introduced nonstandard Dialectica, a functional interpretation capable of eliminating instances of familiar principles of nonstandard arithmetic—including overspill, underspill, and generalizations to higher types—from proofs. We show that the properties of this interpretation are mirrored by first-order logic in a constructive sheaf model of nonstandard arithmetic due to Moerdijk, later developed by Palmgren, and draw some new connections between nonstandard principles and principles that are rejected by strict constructivism. Furthermore, we introduce a variant of the Diller–Nahm interpretation with two different kinds of quantifiers, similar to Hernest’s light Dialectica interpretation, and show that one can obtain nonstandard Dialectica by weakening the computational content of the existential quantifiers—a process called herbrandization. We also define a constructive sheaf model mirroring this new functional interpretation, and show that the process of herbrandization has a clear meaning in terms of these sheaf models
    corecore