440 research outputs found

    Mantle Transition Zone Discontinuities beneath the Contiguous United States

    Get PDF
    Using over 310,000 high-quality radial receiver functions recorded by the USArray and other seismic stations in the contiguous United States, the depths of the 410 km and 660 km discontinuities (d410 and d660) are mapped in over 1,000 consecutive overlapping circles with a radius of 1⁰. The average mantle transition zone (MTZ) thickness for both the western and central/eastern U.S. is within 3 km from the global average of 250 km, suggesting an overall normal MTZ temperature beneath both areas. The Pacific Coast Ranges and the southern Basin and Range Province are underlain by a depressed d410, indicating higher-than-normal temperature in the upper MTZ. The proposed Yellowstone and Raton hot spots are not associated with clear undulations of the MTZ discontinuities, but d410 beneath another proposed hot spot, Bermuda, is depressed significantly and d660 has a normal depth. Low-temperature regions are found in the upper MTZ associated with the subducted Juan de Fuca slab beneath the northern Rocky Mountains and in two circular areas beneath the northern Basin and Range Province and the southern Colorado Plateau. Part of the Great Plains is characterized by a depressed d660. This observation, when combined with results from seismic tomography, suggests the existence of a cold region in the lower MTZ, probably associated with subducted Farallon slab segments

    First principles simulations of liquid Fe-S under Earth's core conditions

    Full text link
    First principles electronic structure calculations, based upon density functional theory within the generalized gradient approximation and ultra-soft Vanderbilt pseudopotentials, have been used to simulate a liquid alloy of iron and sulfur at Earth's core conditions. We have used a sulfur concentration of ≈12\approx 12 % wt, in line with the maximum recent estimates of the sulfur abundance in the Earth's outer core. The analysis of the structural, dynamical and electronic structure properties has been used to report on the effect of the sulfur impurities on the behavior of the liquid. Although pure sulfur is known to form chains in the liquid phase, we have not found any tendency towards polymerization in our liquid simulation. Rather, a net S-S repulsion is evident, and we propose an explanation for this effect in terms of the electronic structure. The inspection of the dynamical properties of the system suggests that the sulfur impurities have a negligible effect on the viscosity of Earth's liquid core.Comment: 24 pages (including 8 figures

    Lithospheric Structure and Evolution of Southern Africa: Constraints from Joint Inversion of Rayleigh Wave Dispersion and Receiver Functions

    Get PDF
    We conduct a joint inversion of teleseismic receiver functions and Rayleigh wave phase velocity dispersion from both ambient noise and earthquakes using data from 79 seismic stations in southern Africa, which is home to some of the world\u27s oldest cratons and orogenic belts. The area has experienced two of the largest igneous activities in the world (the Okavango dyke swarm and Bushveld mafic intrusion) and thus is an ideal locale for investigating continental formation and evolution. The resulting 3-D shear wave velocities for the depth range of 0—100Â km and crustal thickness measurements show a clear spatial correspondence with known geological features observed on the surface. Higher than normal mantle velocities found beneath the southern part of the Kaapvaal craton are consistent with the basalt removal model for the formation of cratonic lithosphere. In contrast, the Bushveld complex situated within the northern part of the craton is characterized by a thicker crust and higher crustal Vp/Vs but lower mantle velocities, which are indicative of crustal underplating of mafic materials and lithospheric refertilization by the world\u27s largest layered mafic igneous intrusion. The thickened crust and relatively low elevation observed in the Limpopo belt, which is a late Archean collisional zone between the Kaapvaal and Zimbabwe cratons, can be explained by eclogitization of the basaltic lower crust. The study also finds evidence for the presence of a stalled segment of oceanic lithosphere beneath the southern margin of the Proterozoic Namaqua-Natal mobile belt

    Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    Full text link
    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial gases from the Earth, which began Earth's decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.Comment: Invited paper for the Special Issue of Earth, Moon and Planets entitled Neutrino Geophysics Added final corrections for publicatio

    Focused wave interactions with floating structures: A blind comparative study

    Get PDF
    The paper presents results from the Collaborative Computational Project in Wave Structure Interaction (CCP-WSI) Blind Test Series 2. Without prior access to the physical data, participants, with numerical methods ranging from low-fidelity linear models to fully non-linear Navier-Stokes (NS) solvers, simulate the interaction between focused wave events and two separate, taut-moored, floating structures: a hemispherical-bottomed cylinder and a cylinder with a moonpool. The 'blind' numerical predictions for heave, surge, pitch and mooring load, are compared against physical measurements. Dynamic time warping is used to quantify the predictive capability of participating methods. In general, NS solvers and hybrid methods give more accurate predictions; however, heave amplitude is predicted reasonably well by all methods; and a WEC-Sim implementation, with CFD-informed viscous terms, demonstrates comparable predictive capability to even the stronger NS solvers. Large variations in the solutions are observed (even among similar methods), highlighting a need for standardisation in the numerical modelling of WSI problems

    Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer

    Get PDF
    Nitrite (NO2−) is an intrinsic signaling molecule that is reduced to NO during ischemia and limits apoptosis and cytotoxicity at reperfusion in the mammalian heart, liver, and brain. Although the mechanism of nitrite-mediated cytoprotection is unknown, NO is a mediator of the ischemic preconditioning cell-survival program. Analogous to the temporally distinct acute and delayed ischemic preconditioning cytoprotective phenotypes, we report that both acute and delayed (24 h before ischemia) exposure to physiological concentrations of nitrite, given both systemically or orally, potently limits cardiac and hepatic reperfusion injury. This cytoprotection is associated with increases in mitochondrial oxidative phosphorylation. Remarkably, isolated mitochondria subjected to 30 min of anoxia followed by reoxygenation were directly protected by nitrite administered both in vitro during anoxia or in vivo 24 h before mitochondrial isolation. Mechanistically, nitrite dose-dependently modifies and inhibits complex I by posttranslational S-nitrosation; this dampens electron transfer and effectively reduces reperfusion reactive oxygen species generation and ameliorates oxidative inactivation of complexes II–IV and aconitase, thus preventing mitochondrial permeability transition pore opening and cytochrome c release. These data suggest that nitrite dynamically modulates mitochondrial resilience to reperfusion injury and may represent an effector of the cell-survival program of ischemic preconditioning and the Mediterranean diet

    Quantization of the Closed Mini-Superspace Models as Bound States

    Full text link
    Wheeler-DeWitt equation is applied to k>0k > 0 Friedmann Robertson Walker metric with various types of matter. It is shown that if the Universe ends in the matter dominated era (e.g., radiation or pressureless gas) with zero cosmological constant, then the resulting Wheeler-DeWitt equation describes a bound state problem. As solutions of a non-degenerate bound state system, the eigen-wave functions are real (Hartle-Hawking) and the usual issue associated with the ambiguity in the boundary conditions for the wave functions is resolved. Furthermore, as a bound state problem, there exists a quantization condition that relates the curvature of the three space with the energy density of the Universe. Incorporating a cosmological constant in the early Universe (inflation) is given as a natural explanation for the large quantum number associated with our Universe, which resulted from the quantization condition. It is also shown that if there is a cosmological constant Λ>0\Lambda > 0 in our Universe that persists for all time, then the resulting Wheeler-DeWitt equation describes a non-bound state system, regardless of the magnitude of the cosmological constant. As a consequence, the wave functions are in general complex (Vilenkin) and the initial conditions for wave functions are a free parameters not determined by the formalism.Comment: 20

    Early High-Dose Vitamin D3 for Critically Ill, Vitamin D-Deficient Patients

    Get PDF
    BACKGROUND: Vitamin D deficiency is a common, potentially reversible contributor to morbidity and mortality among critically ill patients. The potential benefits of vitamin D supplementation in acute critical illness require further study. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 3 trial of early vitamin D3 supplementation in critically ill, vitamin D-deficient patients who were at high risk for death. Randomization occurred within 12 hours after the decision to admit the patient to an intensive care unit. Eligible patients received a single enteral dose of 540,000 IU of vitamin D3 or matched placebo. The primary end point was 90-day all-cause, all-location mortality. RESULTS: A total of 1360 patients were found to be vitamin D-deficient during point-of-care screening and underwent randomization. Of these patients, 1078 had baseline vitamin D deficiency (25-hydroxyvitamin D level,[50 nmol per liter]) confirmed by subsequent testing and were included in the primary analysis population. The mean day 3 level of 25-hydroxyvitamin D was 46.9±23.2 ng per milliliter (117±58 nmol per liter) in the vitamin D group and 11.4±5.6 ng per milliliter (28±14 nmol per liter) in the placebo group (difference, 35.5 ng per milliliter; 95% confidence interval [CI], 31.5 to 39.6). The 90-day mortality was 23.5% in the vitamin D group (125 of 531 patients) and 20.6% in the placebo group (109 of 528 patients) (difference, 2.9 percentage points; 95% CI, -2.1 to 7.9; P = 0.26). There were no clinically important differences between the groups with respect to secondary clinical, physiological, or safety end points. The severity of vitamin D deficiency at baseline did not affect the association between the treatment assignment and mortality. CONCLUSIONS: Early administration of high-dose enteral vitamin D3 did not provide an advantage over placebo with respect to 90-day mortality or other, nonfatal outcomes among critically ill, vitamin D-deficient patients. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 3 trial of early vitamin D3 supplementation in critically ill, vitamin D-deficient patients who were at high risk for death. Randomization occurred within 12 hours after the decision to admit the patient to an intensive care unit. Eligible patients received a single enteral dose of 540,000 IU of vitamin D3 or matched placebo. The primary end point was 90-day all-cause, all-location mortality

    Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous experimental studies have shown that injurious mechanical ventilation has a direct effect on pulmonary and systemic immune responses. How these responses are propagated or attenuated is a matter of speculation. The goal of this study was to determine the contribution of mechanical ventilation in the regulation of Toll-like receptor (TLR) signaling and interleukin-1 receptor associated kinase-3 (IRAK-3) during experimental ventilator-induced lung injury.</p> <p>Methods</p> <p>Prospective, randomized, controlled animal study using male, healthy adults Sprague-Dawley rats weighing 300-350 g. Animals were anesthetized and randomized to spontaneous breathing and to two different mechanical ventilation strategies for 4 hours: high tidal volume (V<sub>T</sub>) (20 ml/kg) and low V<sub>T </sub>(6 ml/kg). Histological evaluation, TLR2, TLR4, <it>IRAK3 </it>gene expression, IRAK-3 protein levels, inhibitory kappa B alpha (IÎșBα), tumor necrosis factor-alpha (<it>TNF-α</it>) and interleukin-6 (<it>IL6</it>) gene expression in the lungs and TNF-α and IL-6 protein serum concentrations were analyzed.</p> <p>Results</p> <p>High V<sub>T </sub>mechanical ventilation for 4 hours was associated with a significant increase of TLR4 but not TLR2, a significant decrease of <it>IRAK3 </it>lung gene expression and protein levels, a significant decrease of IÎșBα, and a higher lung expression and serum concentrations of pro-inflammatory cytokines.</p> <p>Conclusions</p> <p>The current study supports an interaction between TLR4 and IRAK-3 signaling pathway for the over-expression and release of pro-inflammatory cytokines during ventilator-induced lung injury. Our study also suggests that injurious mechanical ventilation may elicit an immune response that is similar to that observed during infections.</p
    • 

    corecore