1,873 research outputs found

    On finite--temperature and --density radiative corrections to the neutrino effective potential in the early Universe

    Full text link
    Finite-temperature and -density radiative corrections to the neutrino effective potential in the otherwise CP-symmetric early Universe are considered in the real-time approach of Thermal Field Theory. A consistent perturbation theory endowed with the hard thermal loop resummation techniques developed by Braaten and Pisarski is applied. Special attention is focused on the question whether such corrections can generate any nonzero contribution to the CP-symmetric part of the neutrino potential, if the contact approximation for the W-propagator is used.Comment: 11 pages, revtex styl

    Precision Drift Chambers for the Atlas Muon Spectrometer

    Full text link
    ATLAS is a detector under construction to explore the physics at the Large Hadron Collider at CERN. It has a muon spectrometer with an excellent momentum resolution of 3-10%, provided by three layers of precision monitored-drift-tube chambers in a toroidal magnetic field. A single drift tube measures a track point with a mean resolution close to 100 micron, even at the expected high neutron and gamma background rates. The tubes are positioned within the chamber with an accuracy of 20 microns, achieved by elaborate construction and assembly monitoring procedures.Comment: 3 pages, 2 eps figures, Proceedings for poster at Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003. FRAP1

    Large-Scale Production of Monitored Drift Tube Chambers for the ATLAS Muon Spectrometer

    Full text link
    Precision drift tube chambers with a sense wire positioning accuracy of better than 20 microns are under construction for the ATLAS muon spectrometer. 70% of the 88 large chambers for the outermost layer of the central part of the spectrometer have been assembled. Measurements during chamber construction of the positions of the sense wires and of the sensors for the optical alignment monitoring system demonstrate that the requirements for the mechanical precision of the chambers are fulfilled

    Performance of the ATLAS Precision Muon Chambers under LHC Operating Conditions

    Full text link
    For the muon spectrometer of the ATLAS detector at the large hadron collider (LHC), large drift chambers consisting of 6 to 8 layers of pressurized drift tubes are used for precision tracking covering an active area of 5000 m2 in the toroidal field of superconducting air core magnets. The chambers have to provide a spatial resolution of 41 microns with Ar:CO2 (93:7) gas mixture at an absolute pressure of 3 bar and gas gain of 2?104. The environment in which the chambers will be operated is characterized by high neutron and background with counting rates of up to 100 per square cm and second. The resolution and efficiency of a chamber from the serial production for ATLAS has been investigated in a 100 GeV muon beam at photon irradiation rates as expected during LHC operation. A silicon strip detector telescope was used as external reference in the beam. The spatial resolution of a chamber is degraded by 4 ?m at the highest background rate. The detection efficiency of the drift tubes is unchanged under irradiation. A tracking efficiency of 98% at the highest rates has been demonstrated

    Expanded boundary integral method and chaotic time-reversal doublets in quantum billiards

    Full text link
    We present the expanded boundary integral method for solving the planar Helmholtz problem, which combines the ideas of the boundary integral method and the scaling method and is applicable to arbitrary shapes. We apply the method to a chaotic billiard with unidirectional transport, where we demonstrate existence of doublets of chaotic eigenstates, which are quasi-degenerate due to time-reversal symmetry, and a very particular level spacing distribution that attains a chaotic Shnirelman peak at short energy ranges and exhibits GUE-like statistics for large energy ranges. We show that, as a consequence of such particular level statistics or algebraic tunneling between disjoint chaotic components connected by time-reversal operation, the system exhibits quantum current reversals.Comment: 18 pages, 8 figures, with 3 additional GIF animations available at http://chaos.fiz.uni-lj.si/~veble/boundary

    Performance of the ATLAS Muon Drift-Tube Chambers at High Background Rates and in Magnetic Fields

    Full text link
    The ATLAS muon spectrometer uses drift-tube chambers for precision tracking. The performance of these chambers in the presence of magnetic field and high radiation fluxes is studied in this article using test-beam data recorded in the Gamma Irradiation Facility at CERN. The measurements are compared to detailed predictions provided by the Garfield drift-chamber simulation programme

    Resolution and Efficiency of the ATLAS Muon Drift-Tube Chambers at High Background Rates

    Full text link
    The resolution and efficiency of a precision drift-tube chamber for the ATLAS muon spectrometer with final read-out electronics was tested at the Gamma Irradiation Facility at CERN in a 100 GeV muon beam and at photon irradiation rates of up to 990 Hz/square cm which corresponds to twice the highest background rate expected in ATLAS. A silicon strip detector telescope was used as external reference in the beam. The pulse-height measurement of the read-out electronics was used to perform time-slewing corrections which lead to an improvement of the average drift-tube resolution from 104 microns to 82 microns without irradiation and from 128 microns to 108 microns at the maximum expected rate. The measured drift-tube efficiency agrees with the expectation from the dead time of the read-out electronics up to the maximum expected rate

    Radial stability analysis of the continuous pressure gravastar

    Full text link
    Radial stability of the continuous pressure gravastar is studied using the conventional Chandrasekhar method. The equation of state for the static gravastar solutions is derived and Einstein equations for small perturbations around the equilibrium are solved as an eigenvalue problem for radial pulsations. Within the model there exist a set of parameters leading to a stable fundamental mode, thus proving radial stability of the continuous pressure gravastar. It is also shown that the central energy density possesses an extremum in rho_c(R) curve which represents a splitting point between stable and unstable gravastar configurations. As such the rho_c(R) curve for the gravastar mimics the famous M(R) curve for a polytrope. Together with the former axial stability calculations this work completes the stability problem of the continuous pressure gravastar.Comment: 17 pages, 5 figures, References corrected, minor changes wrt v1, matches published versio

    Mass-Varying Neutrinos from a Variable Cosmological Constant

    Full text link
    We consider, in a completely model-independent way, the transfer of energy between the components of the dark energy sector consisting of the cosmological constant (CC) and that of relic neutrinos. We show that such a cosmological setup may promote neutrinos to mass-varying particles, thus resembling a recently proposed scenario of Fardon, Nelson, and Weiner (FNW), but now without introducing any acceleronlike scalar fields. Although a formal similarity of the FNW scenario with the variable CC one can be easily established, one nevertheless finds different laws for neutrino mass variation in each scenario. We show that as long as the neutrino number density dilutes canonically, only a very slow variation of the neutrino mass is possible. For neutrino masses to vary significantly (as in the FNW scenario), a considerable deviation from the canonical dilution of the neutrino number density is also needed. We note that the present `coincidence' between the dark energy density and the neutrino energy density can be obtained in our scenario even for static neutrino masses.Comment: 8 pages, minor corrections, two references added, to apear in JCA

    Complementary techniques for probing terahertz magnetic excitations in Cu3Bi(SeO3)2O2Cl

    Get PDF
    A low frequency magnetic excitation in Cu3Bi(SeO 3)2O2Cl has been studied through complementary spectroscopic techniques which utilised terahertz radiation from a synchrotron, a mercury arc lamp, and a two-colour photomixing system. The excitation has been studied at temperatures down to 5K and in magnetic fields up to 10T. © 2012 IEEE
    • …
    corecore